EN
CONTENTS
Introduction......................... 5
Section I. Preliminaries............ 6
§ 1. Notation..................... 6
§ 2. Ackermann's set theory and some extensions................. 7
§ 3. Absoluteness............................................... 8
§ 4. Ordinals................................................... 9
§ 5. Reflection principles...................................... 10
Section 2. The usual notion of constructibility.............. 11
§ 1. General considerations about the constructibility in A...... 11
§ 2. Definitions of some syntactic and semantic notions.......... 12
§ 3. The formula $w=\^{L}_β$...................................... 15
§ 4. Satisfaction................................................. 16
§ 5. Extendability of ZF-models to models of A.................... 17
Section 3. The constructible universe Λ........................... 19
§ 1. The formula H(w, β, V)...................................... 19
§ 2. Some results concerning the formula $w = H_β$............... 20
§ 3. Proof of the main theorem.................................... 24
§ 4. The minimal model of A...................................... 28
§ 5. Ordinal definable classes................................... 29
§ 6. Constructibility in related theories........................ 33
References....................................................... 36