Introduction 1. Preliminaries.............................................................................................5 2. The obstruction to the deformation of a map out of a subspace.............12 3. The case of smooth closed oriented manifolds.......................................17 4. The invariant $o_B(f)$ for PD-spaces.....................................................21 5. The local case of obstruction theory.......................................................24 References.................................................................................................29
Higher Pedagogical College, Olsztyn Department of Mathematics, Żołnierska 14, 10-561 Olsztyn, Poland
Bibliografia
[1] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott-Foresman, 1971.
[2] R. Dobreńko, The local obstruction fixed point index of fiber preserving maps, in: Coll. Soc. J. Bolyai 41, Topology and Appl., Eger 1983, 247-259.
[3] R. Dobreńko and Z. Kucharski, On the generalization of the Nielsen number, Fund. Math. 134 (1990).
[4] E. Fadell and S. Husseini, Fixed point theory for non-simply connected manifolds. Topology 20 (1981), 53-92.[5] E. Fadell and S. Husseini, Local fixed point theory for non-simply connected manifolds, Illinois J. Math. 25 (1981), 673-699.
[6] E. Fadell and S. Husseini, A fixed point theory for fiber-preserving maps, Lecture Notes in Math. 886 (1981), 49-72.
[7] S. T. Hu, Homotopy Theory, New York 1959.
[8] E. Spanier, Algebraic Topology, McGraw-Hill Inc., 1966.
[9] N. Steenrod, The Topology of Fibre Bundles, Princeton 1952.
[10] G. W. Whitehead, Elements of Homotopy Theory, Springer-Verlag, 1978.