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This paper, a summary of a lecture given at the Banach Oenter, presents
some aspects of numerical treatment of convex semi-infinite optimization
problems. In the first part of this paper the theoretical foundation of
numerical treatment is studied: continuity properties and the conver-
gence of sequences of approximations of semi-infinite problems. The
second part deals with the application of the method of feasible directions
to semi-infinite optimization. Sufficient conditions for the convergence of
this method in the case of nondifferentiable problems are stated and
adaptive discretization strategies for the semi-infinite direction search
problems are discussed. All results are given without proofs, which may
be found in the original papers referred to.

Introduction

Semi-infinite programming deals with the problem
min{f(z): g(z,1)<0,te M,de X}.

In the case of a finite set M, this is nothing but an ordinary optimization
problem with a finite number of inequalities. But there are many problems
where the set M is not finite, for example problems with constraints
depending on time or space coordinates (i.e., general approximation prob-
lems, variational inequalities, optimal control problems) (cf. [8], [13]).

While the theory of optimality conditions for semi-infinite program-
ming has been developed to a high level (cf. [4], [8], [10]), only a few pa-
pers are concerned with the numerical treatment of such problems (cf.
(61, (13D.

Since semi-infinite programming problems cannot be solved directly,
discretization methods must be used. In this way, only approximate
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solutions are obtained. For this reason, continuity properties of such
problems with respect to perturbations of the data must be studied.
The analysis of the continunity and stability of the set of optimal
solutions and the optimal value of the objective function is based on con-
tinuity and stability properties of the restriction domain. If the behaviour
of the restriction domain under small perturbations of the input data
is bad, one cannot expect the set of optimal solutions and the optimal
value of the objective function to have a good behaviour. The connections
between the stability of the restriction domain and the stability of the
set of optimal solutions are considered for several classes of finite and
infinite-dimensional programming problems (ef. [3], [5], [71, [9], [14]).
Statements on the continuity and stability of semi-infinite program-
ming problems can be nsed to ensure the convergence of an:appropriate
sequence of approximations of semi-infinite programming problems.
These problems will be considered in the first part of this paper.
Computational methods for solving semi-infinite programming prob-
lems can he divided into two groups: methods of a priori discretization and
‘methods of adaptive discretization. In methods of 4 priori discretization
a grid M’ c M is chosen 3 priori and then thé arising finite-dimensional
problem is solved by usual computational algorithms for programming
problems. This concept has two striking disadvantages: first, the optimal
solutions of the approximate problem are not feasible¢ for the semi-infinite
problem; second, in order to'obtain a sufficiently exact-approximation of
an optimal golution of the original semi-infinite problem, a grid M’ of
high density must be used. These facts cause some numerical difficulties.
The idea of adaptive discretization is to improve the discretization used
successively depending on the information available at each iteration
step. By these methods semi-infinite programming problems can be handled
in an effective manner. Methods of feasible directions belong to the class
of methods with adaptive discretization. In the second part of this paper
we consider methods of the type described in [15]. The discretization of
the semi-infinite direction search programs depends on the precision of
the feasible approximate direction. Under natural assumptions on the
smoothness of the functions involved, a sequence of feasible solutions
converges to an optimal solution of the semi-infinite original problem.

1. Continuity properties and convergence of sequences of
approximations of semi-infinite programming problems

We consider the following problem:

(1.1) min{f(z): g(v,t1)<0,te M,ne X}
under the
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AssuMPTION A 1.1.
(i) X <« R* intX # 9, X is closed and convex,
(ii) M is a compact subset of a metric space ¥,

(iii) for an arbitrary fixed ¢ € M the function g(@,t) is convex on
a neighbourhood of X,

(iv) g(x,1) is continuous on X X M, f is continuous and convex on X,
(v) problem (1.1) is solvable, i.e., X, # D.

ASSUMPTION A 1.2. Problem (1.1) satisfies a Slater condition, i.e.,
there is an & eintX such that ¢g(z,1)< 0 Vie M.

For each fixed {, € M the map g, (7): R"—>R is convex and defined
by z->g(o,t,). Therefore, the set of fcasible points of the finite convex
programming problem

{1.2) min{f(z): g(z)<0,re X}, (e M fixed

is convex and compact.
Now, introduce the following maps:

y: toyp(t) = {w e X: g,(2) < 0},
the point-to-set map of feasible solutions to the parameter #;
p: {—>p(t) = min{f(z): » € p(1)},
the optimal value function and
®: t>P(t) = {z e p(t): f(z) = (1)},

which assigns the set of optimal solutions to ¢.
By using the definition of continuity for point-to-set maps according
to [1], the following statements can be proved (cf. [14]).

THEOREM 1.3. Let t' € M be fived and A 1.1 be satisfied. Then the point-
to-set map P 18 upper-semi-continuous (u.s.c.) at the point t'. If in addition
A 1.2 holds, then y is also lower-semi-continuous (l.s.c.).

Remark 1.4. If the Slater condition is not satisfied, the map y need
not be ls.c. at ¢’ as examples in [13] show.

THEOREM 1.5. Let t' € M be fized and let A 1.1 and A 1.2 be satisfied.
Then the point-to-set map D 18 u.s.c. at ¢'.

THEOREM 1.6. Let t' € M be fized and let A 1.1 hold. Then the func-
tional @ 18 u.s.c. at t’. If, together with A 1.1, A 1.2 is salisfied, then ¢ is l.8.c.
at t'.
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Remark 1.7. In the theorems above the continuity of g(z,f) on X x M
is required. Since M is 2 compact set, the map [z,t]e X x M —>g(«x,t)
is continuous on the product space if and only if

(a) the family of functionals g, is uniformly continuous at all z ¢ X
and -

(b) the map t € M—g,(x) is continuous Vz € X.

These statements on the continunity and stability of problem (1.1)
can be used to ensure the convergence of an appropriate sequence of
approximations of problem (1.1).

As such an approximation the following problem is considered:

(1.3) min{f(z): g(z,1)<0,te M;, 2 e X},

where M, = M is a finite set for all ¥ and M, converges to M in the sense
of the metric space Y (M ,,LM ). Hence, the approximate problems
(1.3) are finite-dimensional convex problems and computable ones.

As an immediate consequence of the continuity statements descri-
bed in the theorems above, the convergence of problems (1.3) to the semi-
-infinite problem (1.1) can be proved in the following sense (cf. [14]):

THEOREM 1.8. Let A 1.1 be satisfied and M, = M. Then

(i) an optimal solution a* of problem (1.3) exists for k sufficiently large,
t.e.,

AEVE> k' f(#*) = min{f(z): g(z,?)<0,te M,z e X};

(ii) the sequence {z*} of optimal solutions of (1.3) contains at least one
convergent subsequence and all cluster points of {z*} belong to the set of optimal
solutions of (1.1).

In a computer only finitely many digits with limited precision can
be stored, and therefore it is very helpful to know the error bounds for
the optimal solutions of the approximate problems (1.3) in connection
with the semi-infinite problem (1.1). In the following such error bounds
are described in relation to the density of the set M, and the smoothness
of the functional g(z, ?).

We consider the following error bounds:

6(x) = max{g(w,t): te M},
which is a measure of feasibility of any point z € X and

8" = |f(a") —f(a"),

which is the defect between the optimal values of problems (1.1) and
(1.3).
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By introducing the following notation:

h = max min |t — ||
teM M),

(density of the grid M),
w,(z) = max{|g(t)—g(t)|: Vi,¢' e M, t—1'| <2}
(modulus of continuity), the following statements can be shown (ecf. [13]):

THEOREM 1.9. Let z* be an optimal solution of (1.3), 2* an optimal solu-
tion of (1.1), 2° a Slater point of (1.1) and y = max {g(z° t): t € M}.
Then

8(2*) < wy(h)
and

8" < wy(h) [y~ f(a°)]
holds.

Remark 1.10. In the case of linear semi-infinite programming problems,
l.e.,

g9(z,1) = ) f(ha;—b(1),
X — polyhedral, the modulus of continuity is decomposable and therefore

(1.4) (@) < D |aflwy, (h) +wy(R).

If X is a cube, then formula (1.4) can be used for a priori estimations.

If the modulus of continuity can be replaced by bounded partial
derivatives of the function g, then the estimations can be expressed analo-
gously in terms of the bounds of the derivatives of g.

2. Methods of feasible directions for
semi-infinite programming problems

Now we consider the following problem

f(m)—}min,
(2.1) gz,1)<0 VieM,

veX ={&: f;(x) <0, i =1(1)m},
under the assumptions A 1.1 and

ASSUMPTION A 2.1.
(i) V,g(z,1) is continuous on X x M.

(ii) f, fiy ..., fm are convex and differentiable on a neighbourhood
of X.
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Before describing the method of feasible directions for problem (2.1),
recall this method for unrestricted optimization problems of the form

(2.2) min{F(z): v € R*}.
Any realization of the following basic algorithm is referred to as a method

of feasible directions for solving problem (2.2):

Let 2, edomF and suppose that the points @, ..., 2, edomF have
already been generated by the algorithm. Then the point ., is determi-
ned by the following two steps:

1. Determine a direction r, such that

F @, 1)< 0

(direction search).
2. Determine a scalar A, such that

F(241,) = F(2+41e) = min{F(z, +ar,): 2> 0}

(step size determination by line search).

The convergence of the method of feasible directions obviously de-
pends on the directions used, one of the difficulties being that zig-zagging
must be avoided. If the direction search is made by the following program:

Determine r;, such that
F'(a’k’ ) = min{F’(mki r): Il <1},

where F'(z, r) is the directional derivative in direction r at the point z,

the method may not necessarily converge.

An approach to the construction of appropriate programs for the
direction search using anti-zig-zagging rules will be given in the sequel.
Put

Y = {x: g(»,t) <0 Vte M}

and (with é(z | X) denoting the characteristic function of the set X)
F(z) = f(x) + 8(2|Y) + 8(2| X).

Then problem (2.1) is equivalent to problem (2.2). Next, the subdiffer-

ential of the function ¥ must be known. It is easy to show that by A 1.1
and A 2.1 the subdifferential of F is

(2.3) OF (2) = Vf(x) -+ 28(2|Y) + 06(w|X)
with
26(z|X) = cone {conv{ Vf,(z): i e I(a)}},
I(x) = {t: fi(w) = 0}
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and
98(x|Y) = cone {clconv{V,g(x,1): t € M(2)}}],
M(z) ={te M: g(x,t) = 0}.
The basis for the following considerations is the following general algorithm

(MFD):

(MFD): Let ||| be an arbitrary norm of the Euclidean space, let
{g} be any sequence of positive numbers (decreasing to 0) and let {h;}
be a sequence of functions such that A;: R* x B—»R and h(2, )= F'(z, 1)
V(@,r)edomF xB, B = {r: |Ir] <1}.
Step 1° Let z,edomF, k :=0,1:=0
2° Determine r, such that
hy(xy, 7)) = min {k;(x,, 7r): r € B}
3° (a) If My(x), 1) < —&;, 8O to 4°
(b) otherwise go to 6°
4° Determine 4, such that
F(@,+ A7) = min{F(x, +4r,): 1= 0}
and
Bryr 1= T+ Ayt
5° k :=k+1 go to 2°
6°1 :=1+41 go to 2°
An analysis of this method shows that the inner cycle (steps 2°-5°)

must be carried out in a finite number of steps for each index I. Otherwise

an implementation of the method cannot be guaranteed. By using the
notation

X (kyy &) = {z: My(z,7) > —5V7r € B},

X(¥',0) ={z: F'(w,7)>0 VreB),
the convergence of the method (MFD) can be obtained under the following
two conditions:

(1) For every fixed ! the method (MFD) gencrates an element of
X (k;, g) in a finite number of steps,

(2) A sequence {h;} of functions must be chosen such that

l_.i_m_X(h” e;) < X(F’, 0).
100

The following three variants of direction search programs satisfy these
two conditions and the convergence proofs are given in [15].
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The first variant arises from an extension of the subdifferential

(2.3) while in the other two wvariants the directional derivatives of the
function F are used directly.

VARIANT A. In this variant the function k; is chosen as

(2.4) (@, 1) =sup{{r, ¥>: y € P, ()},
where ¢ > 0 can be chosen at will and
(2.5) P, (@) = Vf(x)+conefconv{Vf,(2)+¢B: i el, ()}}+
+cone{cleonv{y_ g(z,t)+¢,B: t e M,,(m)}l,
I (®) = {i: —&< fi(z) <0},
My@)={teM: —g<g(z,)< 0}.
THEOREM 2.2. Let {¢;} be a sequence of positive numbers decreasing to 0

and let {h;} be constructed by (2.4). Suppose that the sequence {x,} is gene-
rated by (MFD). Then

(i) F(@yr) < Flay) VE,
(i) {wy} is bounded and for every cluster point x, of {zy} we have
F(2p,7) =0 VreB,
$.6., T € Xypt-
VARIANT B. Put
(2.6) h(z,r) = min{z: (r, 2) € R(x)},
where 6> 0 and
(2.7)  R(@) = {(r,2): (Vf(@),7) <2, (@) + (Vfi(@), 7> < 2, € Io(a),
g(m, 1) +{V,q(x, 1), 7> <z, t e My(a)},
Iy(a) = {i: —d<fi(z) <0},
My(z) ={teM: —d< g(x,1)<0}.
THEOREM 2.3. Let the sequence {x,} be generated by (MFD) with arbitrary

fized & = 8§ > 0 VI, (i.e., the sequence {g} is constant and does not tend
to 0). Then

(i) F(@yp) < Fx) VE; _

(ii) Every cluster point ., of {x,} is an optimal solution of (2.1).

This approach to the direction search program is equivalent to that
of Oettli (ef. [2]).

VABIANT C. A further direct realization of a function h(x, r) satisfying
the convergence conditions is

(2.8) (@, r) = max (f(z+7)—f(x), max{fy(@+7): i € L(a)},
max{g(z+r,t): t € M,(2)}}
with I,(x) and M,(2) as in (2.7) and é > 0 fixed, too.
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The convergence theorem is analogous to Variant B. Variant C works
without derivatives, and hence the functions involved need not be differ-
entiable. Difficulties in this variant occur in the numerical treatment of
the direction search problem, which, according to (2.8), is

min {k(z,7): r € B}.

In this case methods without derivatives must be used, i.e., methods of
randoin search.

In all the three variants the direction search problems are semi-
infinite problems, because the sets M,(r) and M,(x) may be infinite
setz, The purpose of the next few pages is to show a treatment of these
semi-infinite direction search problems which permits us to determine
a suitable and feasible direction for the (MFD). The application of an
a priori discretization concept for the semi-infinite direction search prog-
rams is possible in principle. However, a discretization which is success-
ively improved according to the information available in each iteration
stecp seems to be more appropriate. This means discretizing the set M
in such a way that at each step discretization points are used only to an
cxtent necessary to determine a suitable and feasible direction.

In order to describe this approach, consider the following Lipschitz
condition. =

AsSUMPTION A 2.4. For every z € X there exists a constant L(®) with

z,V)—g(z, )| < L(x) |’ —1
and gz, 1) ’g( , D) < Lx) |l I ’ Vt',tEM.
1Veg(z, ') —V,g(z, )l < L(=) It —1||
Then the following statement holds:
LEMMA 2.5. Let r be a direction at the point (%, i) with r € B such that
(V9(Z, t), r> < —y.
Then
(V,0(F 1), 7> < —p/2  Vielte M: lt—F) < y(2L(2)™).

Let M, be an arbitrary finite discretization of the set M and let

h = max min |t — |
teM leM)

denote the density of the point set M,. Lemma 2.5 serves to prove the
important statement of the next lemma:
LEMMA 2.6, Let
h < min |y (2L ()™, (2L (z))™)
and

M(Z) = {t € My: g(Z,1) = —¢}.
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If a direction r exists with r € B and

(V. g(ZE, 1), r> < —y vtej’[h(i)’
then

(Vo9(Z, 1), < —p/2 VieM,(s) ={te M: —¢/2 <g(Z,1) < 0}.

In the sequel such a discretization concept is described for Variant A.
By using the results in Variant A the semi-infinite direction search problem

minsup{<r, ¥ y € Py(a)}

is obtained. By definition (2.5) of P, () this problem can be expressed by
{r, Vf(z)> —»min,

(2.9) &, Vi < —q  VieL(a),
{ry Vog(@, 1)) < —g  Vie Mq(a’)’
Irll < 1.

If r, is an optimal solution of problem (2.9) with

(r.Vf(2)) < —¢g
then, according to step 3° of (MFD), r,_ can be used as a suitable direction
for (MFD).
Now, by using Lemmas 2.5 and 2.6 it is possible to discretize the set
M, (@) in such a way that an optimal solution of the discretized problem
satisfies the restrictions of (2.9). By using A 2.4, a discertization M, with

h = &(2L(x))™
can be chosen. Then, consider the finite set
(2.10) ME(z) = {te My: g(o, 1) > —2¢).

This set can be determined without difficulty, since the set M, has only
finitely many points. Using (2.10), (2.9) yields the following finite program-
ming problem:

{r, Vf(@)y—>min,

(2.11) &y Vile) < —g,  tel,(a),
(ry, Vog(z, 1)) < —2¢, te ﬂ:(a’)y
Irll < 1.

Let #* be an optimal solution of (2.11) with

<r*y V(@) < —e.

Then this solution satisfies all conditions of the (MFD). The choice of
the norm in problem (2.11) determines the class of optimization problems
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to which this problem belongs. By choosing the L. -norm linear proble
are obtained. This approach is equivalent to Zoutendijk’s P1-Algorith
[16] for finite-dimensional problems.

The step-size problem

min{F(z+ir): 1= 0}

can be handled by classical one-dimensional methods for convex functions.
The essential problem is the determination of feasibility for the point
@+ Ar for problem (2.1). The determination of the feasible step-length
can be computed by using only the finite set M,.

Remark 2.7. 1. The fact that no nonconvex programming problem
of the form

max{g(z,t): t € M(x)}

has to be solved (as in cutting plane methods) is an important advantage
of this discretization concept.

2. The Lipschitz condition of the function ¢ in ¢ (with respect to
its gradients) allows the determination of a bound of density for the
set M,. Without difficulty, an estimation for the dimension of the fini-
te-dimensional direction search problem can be given according to the
parameter ¢. If a minimal precision ¢ for the method of feasible direction
is given, the maximal number of restrictions for the direction search
problem using formula (2.10) can be estimated. In addition, it is an ad-
vantage that at the beginning of the algorithm we use a grid of relatively
Jow density which is subsequently enlarged only if, due to the decreased
g, no suitable direction can be found by the present approximation.

3. In the discretization concept described above it was assumed that
the Lipschitz constant of the function g is known for fixed . The method
is also practicable if this constant is unknown. Then begin with an esti-
mation L, of this constant and determine the grid constant » with it.
If the resulting direction, which is determined by the given ¢, is not
feasible, orif the step-size is too small, then the chosen L, is too small, There-
fore, L, must be increased in an appropriate manner.
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