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Using intrinsic geometrical properties of projective varieties we will improve
Harris’ bound for the geometric genus of varieties in P". Furthermore, we will
get new and sharp bounds for the genus of arithmetically Buchsbaum varieties
and of varieties of codimension 2. In case of Buchsbaum varieties we also prove
sharp bounds for Castelnuovo’s regularity. Our approach in proving such
bounds is to reduce the problem to the case of a collection of points in uniform
position. This means the key idea here is the uniform position principle
developed by J. Harris in case of space curves. Hence the present paper relies
upon an analysis of the Hilbert function of the section of a subvariety V with
a generic linear subspace of dimension = codim (V). Finally we improve some
bounds in case of space curves.

0. Introduction

The study of possible genera of irreducible space curves in P> has a fairly long
history (see, e.g. [14-21]). A main problem is the following:

Given integers d, k > 0, we wish to find the maximum genus g = G(d, k)
of an irreducible nonsingular curve in P? of degree 4 which is not contained in
any surface of degree < k. This problem is still open. Qur Theorem 5 of Section
5 yields contributions to solve this problem by applying new Castelnuovo
bounds. Moreover, in this paper, we will study the analogous question for
projective varieties of arbitrary dimension: what is the greatest possible
geometric genus of an irreducible, nondegenerate variety of degree d in P*? This
problem was solved in 1981 by J. Harris [16] (see our Corollary 6). Using
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164 U. NAGEL AND W. VOGEL

intrinsic geometrical properties of projective varieties we will improve Harris’
bound for the geometric genus of varieties in P™ (see our Theorem 1 of Section
2). Furthermore, we will get new and sharp bounds for the genus of
arithmetically Buchsbaum varieties (see Theorem 3) and of varieties of
codimension 2 (see Theorem 4). In case of Buchsbaum varieties we also prove
sharp bounds [or Castelnuovo’s regularity. We therefore strengthen and extend
main results of [32] and [35] (see Theorem 2).

Our approach in proving such bounds 1s to reduce the problem to the case
of a collection of points in uniform position. This means the key idea here is the
uniform position principle developed by J. Harris [15], [17] in case of space
curves. Hence the present paper relies upon an analysis of the Hilbert function
of the section ¥V n L of a subvariety V with a generic linear subspace L of
dimension = codim (V). This makes it possible to give new bounds on the
geometric genus of projective varieties V (see Section 2). We return in Section
3 and 4 to consider arithmetically Buchsbaum varieties and varieties with
codimension 2. Finally in Section 5 we study space curves.

1. Notations and preliminary results

First we will recall some basic facts on finite sets of points in uniform position.

In general, the Hilbert function h, of a subscheme X of P is defined by
letting h, (t) be the rank of the ¢th graded piece of the homogeneous coordinate
ring Sy:= K[xq, ..., x,1/Iy of X, where K is an algebraically closed field. We
sct

Ahy(t) = hy () —hy (1 —1).
DeriniTION ([15], [17]). A set X of d points in P" 1s said to be in uniform
position if for any subset S of X consisting, say, of s points (1 < s < d), we have
hs(t) = min {s, hy (1)} for all t > 0.

Before stating our results on points in uniform position, we give some general
observations and collect some known results that we need.

LeEmMMA 1 (see [17], Corollary 3.5). Let X be a set of d points in uniform
position. Then for any integers t,, ..., t, one has

hy(t,+ ...+t ) 2 min{d, Y hy(t)—m+1}.
i=1

For a set X of d points we set
r(X):=min{reN:h,(r) = d}.

Lemma 2 ([15], [22], Corollary 2). Let X be a finite set of points in uniform
position in P2. Then we have
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t+1 forOStéa—l,
a fora<t<h—1,
A = '
hy (1) < Ahy(t—1)  for b<t<r(X),
0 for t > r(X),

t+2
where a = min {te N:hy(t) <( ; )}, and

{a if hy(a) < (“;2)-2,
b=

min {t > a:dhy(t) < a}  otherwise.

Supplement. Moreover, it follows from [22], Proposition 1, that
degree (X) < ab.

LEMMA 3. Let X <« P (r = 2) be a set of d points in uniform position,
spanning P'. We set m: = min {teN:hy(t) =2 d—r+1}. Then the ideal 1(X) of
X is generated by forms of degree < m+1.

Proof. We will apply Theorem 1.2 of [24]. We note that the points are also
in general position. Let U < X be a subset of d—r+1 points. Since X is in
uniform position we have

hy(my=min{d—r+1, hy(m)} =d—r+1.

Let 2, denote the ideal sheal of U in P". It follows from [30] that
(d—r+1)—hy() = dim  H' (P", 2, (1)), that is, H' (P", #,(m)) = 0. Since the
condition (i) of Theorem 1.2 of [24] can be dropped in the statement (this is
a simple consequence of [23], Lemma 2.1} we obtain our Lemma 3 from this
Theorem 1.2. =

LEmMMA 4. Let X < P", r = 2, be a set of d points in uniform position,
spanning P'. We assume that X is not lying on a hypersurface of degree < k.
Moreover, we set

pemafinl (7)) [

r

e o) [

r

Then we get 0 < p<k—1 and 0<gqg<k-1, and
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r+k—1

r
(il The ideal 1(X) is generated by forms of degree

() r(X)<(k—1) [ d—1 ] +p,
—1

d—r

<k—1) {(Hk_l) } +q+1.
1

r

Proof. Since X is not lying on a hypersurface of degree < k we have
hy()=("7") for all t =0, ..., k—1
Hence we get from Lemma 1.

hylitk—1)+j) = min{d, i[(r+l;—l>—l]+(jtr>} for i=0,.  k—1.

Then a trivial verification shows (i). The assertion (i1} then results immediately
from Lemma 3. m

Remark. Lemma 4 (ii) improves Corollary 1.2 of [35]. Lemma 4(i) also
follows from Lemma 2.3 of [35].

Finally, we introduce some notations. Let S: = K [x,, ..., x,] be a poly-
nomial ring. Let a be a homogeneous ideal of S. We set A:= S/a, that is, 4 is
a graded K-algebra. Let M = @, M, be a graded A-module. The ith local
cohomology module of M with support in the irrelevant ideal m = @, ,4,,
denoted by H! (M), is also a graded A-module. For i€ Z let [M]; denote the ith
graded part of M, i.e., [M];, = M,. Let p be an integer then let M (p) denote the
graded A-module whose underlying module is the same as that of M and
whose grading is given by [M(p)];, = [M],,, for all ieZ. For an arbitrary
graded A-module M we set

e(M):=sup {teZ:[M], # 0},
a(M):=inf{teZ:[{M], # 0],
[h,, (M)],:= rank, [H, (M)],.

We set for integers a, b >0

E
[

(a) _ala—1)...(a—b+1)

| &

}:: min {teZ:a < th},

]:=max{teZ:u2 th},

b=l B~

7
h =0 g :
b 15 b , were(b) 0 fora<h
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2. Hilbert functions of finite sets of points
and bounds for the geometric genus of projective varieties

Before proving our key lemma we will give the following definition.

DeriniTION. Let X be a subscheme of P% of dimension zero and degree d.
A numerical function hy:Z — Z is said to be a lower estimation of hy if
' (i) 0 < hx(1) < hy(r) for all teZ

(i) Ky (t)=d for all £ » 0.
Moreover we set M +1:=min {teN:hy(t) = d}.

LEMMA 5. Let V < P be a scheme of dimension n 2 | and degree d. Let
X:=VnL,_, be the points of the intersection of V with a sufficiently general
linear space L__, of dimensionr —n where weset L,_, = H, n...n H,. Let h be
a lower estimation of hy. Then we have

0 fort>M-—n,
dim, H*(V, 0, (1)) < - M /i
img H"(V, Oy (1)) {(M t)d_ 5 (j t 1)
n j=t+n n—1

Proof. We induct on n. Let n = 1. Let 4 be the homogeneous coordinate
ring of V. Since depth(4) > 0 we have the following exact sequence:

0 [A4],-> H°(V, 0,(t) » [H.(A)], - 0.
Hence we get
W2V, Oy ()= h° (V, Oy (t=1)) = hy () —hy (t = 1)+ [hy (D)), — [, (D], -,
where we put k' (V, 0, (1)) = dimg H'(V, 0 (1)).
Moreover, the exact sequence
0—A(—1)>A4—>A/lA>0
provides
BV, 0, ()~ K (V, Oy (t—1))
= hy (6)+ [y (A/IA)], + [he ()], — [ (AN, | 2 By (2).

Riemann’s half of the Riemann-Roch theorem asserts simply (see, e.g., [25],

§ 11):
RV, 0,(0)) = —dt+g—1+h°(V, O, ().

Hence we get h' (V, O, (¢ —1))—h"(V, 0, (1)) < d—hy(t). Since h*(V, O, (1)) =0
for all +t> 0 we obtain our lemma in case n=1. Let n>1. We set
W:= V n H,. Consider the exact sequence

0-0,t—-1)>0,(t)— Oh(t)—0.
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Hence we have m'(V,0,(t=1)<h* (W, O, 0)+h"(V, C,(1). Since
h"(V, Oy (1)) = 0 for all > 0, by induction we obtain

0 for t>M—n
n M-n+1
h"(V, @V(t))S{ Y, WTHW, Gy (i)  for t < M—n.

i=r+1

Using induction again we get:

PRI iy b ey LT,
R T e
=(““) - 205 e

since Z Cry=(C31Y for b,c, seN. =

Lemma 5 has interesting consequences. For instance, using this result we
will describe another proof of Harris’ bound on the geometric genus of
projective varieties (see [16], p. 44). Following J. Harris we first recall the
definition of the geometric genus. Let V' be a reduced, irreducible and
nondegenerate subscheme of P%. K is a field of characteristic zero. Then we can
find a resolution of ¥, that is, a smooth abstract variety ¥ mapping
holomorphically and blratlonally to V. We take the geometric genus p, (V) to
be the number h°(V, Q%) = h*(V, ¢’;) of holomorphic forms of top degree on
V where n = dim V = dim V. This is a birational invariant, that is, it does not
depend on the choice of a resolution. In what foliows, we will maintain the
terminology of projective geometry: a “hyperplane section of 7" will be the
pullback of a hyperplane in P* via the map n: ¥ - V, and Oy (1):= n* (. (1)
the corresponding sheaf. Likewise, an m-plane section “P™ n " of ¥ will be the
intersection on ¥ of r—m elements of the linear system |y (1)i; note that since
|0y (1)| has no base points, by Bertini the generic m-plane section of ¥ will be
again smooth. Therefore our Lemma 5 yields bounds for h"(l7, Cy(t)) = p, (V).
Using Lemma 5 we will apply the uniform position lemma of Harris [15].
Hence we need again that the characteristic of the basic field K is zero. We note
that this uniform position lemma is not true in general if char(K)#0
(see [29]).

CoRrOLLARY 6 (see [16], p. 44). Let V < P" be an irreducible, reduced and
nondegenerate subvariety of dimension n and degree d. Then we have the
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Jollowing bound on the geometric genus of V:

p,(V) < (nhjl)(r—n)+(tl)s

where M is defined by d—1 =:M(r—n)+¢ with 0 <e<r—n.

Proof. We consider first a generic section X = Vn L, _, such that X is
a set of d points in uniform position, spanning P"~". This is possible by Bertini’s
theorem and the uniform position lemma for a general hyperplane section of
a curve (see [15]). Hence hy(l)=r—n+1 and by Lemma 1 we have

hy (1) 2 min{d, t(r—n)+1}.

(This is also true, for points in general position, see, e.g., [12].) Choosing
h%(t) = min {d, ¢ (r—n)+ 1} we obtain our corollary from Lemma 5. Note that
our M coincides with the integer M of the definition of Section 2. m

We may apply the same techniques to bound the genus p, (V) of V
under the hypothesis that X = VnL,_, does not lie on a hypersurface of
a certain degree. Knowing such property we will improve the bound of
Corollary 6.

THEOREM 1. Let V < P" be an irreducible, reduced and nondegenerate
subvariety of dimension n und degree d. Let L, _, be a sufficiently general linear
space such that X :=V n L, _, is a set of d points in uniform position not lying on
a hypersurface of degree < k'. Then we have

M M i—1
P (V)< G, K, n):=(n)— y (fl_l)hw)

j=n

¥(i(k'=1)+1) = min {d, i[(r—'H'k'_l)_ 1j|+(l+r—n)}
r—n I

for all 0 <1< k'—1 and ieN and M is defined by hy.

where

Proof. It follows from the proof of Lemma 4 that Ay is a lower estimation
of hy. Hence Lemma 5 provides Theorem 1. m

Also, Theorem | has some interesting consequences for special sub-
varieties. First we recall that a subvariety V of degree d = n(r—n)+ 2 which
achieves our bound on p, (V) of Corollary 6 is said to be a Castelnuovo variety

(see [16]).

COROLLARY 7. Let V < P be a Castelnuovo variety of degree d = (""%"2) of
codimension (r—n) > 2. Then the generic section VAL _,= X is lying on
a quadric.
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Proof. Theorem 1 and by our proof of Corollary 6 since ("7%"?)
>2(r—n)+1. =

CoroLLARY 8. Let V < P” be an arithmetically Cohen—Macaulay subvariety
not lying on a hypersurface of degree < k. Then

p, V)< G, &, n).

Proof. Theorem 1 since m the Cohen-Macaulay case we may choose
k"= k (see, e.g., Lemma 5.1 of [2]). m

ExampLE 1. Consider the irreducible, reduced and nondegenerate curve
C < P of degree d = 32, genus g = 109 given in [9], Proposition 3.1. Then C is
arithmetically Cohen-Macaulay and not lying on a hypersurface of degree
< k =7. For instance, this curve is a positive example for Hartshorne’s
conjecture 2.5 of [19] since Corollary 3.8 of [20] provides for the genus
g < 111. Also, Corollary 8 gives g < G(32, 7, 1) =111.

Finally, we will state a new bound for the first cohomology of a normal
surface. By combining our approach (Lemma 5 and Corollary 6) with
Brodmann’s approach [4] (Proposition A and Lemma 3) we get the following
corollary.

COROLLARY 9. Let F < P" be an irreducible, reduced, nondegenerate and
normal surface of degree d. Let X := F n L,_, be the points of the intersection of
F with a sufficiently general linear space L, _, of codimension 2. Let h be a lower
estimation of the Hilbert function hy. We recall that M+ 1:= min {teN:h (1)
=d}. If M > 0, then we have

(0 for t <0
M+1\ (M—t\] '& s
d[( )—( )]— R Gl—(+D( Y, () =o-r.
2 2 j=1 j=t+2
h'(F, (D‘F(t))Sﬁ for 0 <t < M.
M
d(M;}-l)—Zh’x(j)j—é-r=:y for M <t <p,
j=1
“max {0, y—r(t—p+ 1)} for t = p.

If M =0, then we get for all integers t: h'(F, C(t)) = 0, where

< if h*(F, ) =
p=Md—3 he() and 6= {0 if h2(F, ¢y) =0,
f=1

i= !, otherwise.
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3. Bounds for Castelnucvo’s regularity and the geometric
genus of arithmetically Buchsbaum varieties

We recall that a subvariety V < P% is said to be arithmetically Buchsbaum if
the graded K-algebra K [x,. ..., x,]/I(V) is a Buchsbaum algebra where I (V)
is the defining ideal of V in the polynomial ring S:= K [x,, ..., x,]. The
readers may consult the book [31] for a comprehensive introduction to the
subject on Buchsbaum rings and modules and also for the recent development
of the theory. Hence let us note only the next criterion which we need in the
sequel:

LemMma 10. Let a be a homogeneous ideal of §:= K{[x,, ..., x,]. Assume
that A:== S/a is a Buchshaum K-algebra of Krull-dimension n+1 = 2 and a does
not contain a form of degree < k where without loss of generality k is an integer
=2 Letl,..., I, be a part of a system of parameters of A of degree 1 with
0<e<n Then we have

[HO(A/(Ly, ..., 1)A)]; =0 for all i<k—1.

Proof. After a suitable change of the homogeneous coordinates we may
assume that I, = x,, ..., I, = x_,_,. Assume that there is a form F of degree
i < k—1 such that

Fe[HS(A/(xqg,.... x,_ ) A)]; = [K [X,, --., %]];-

Since A4 is Buchsbaum we also have that A/(x,, ..., x,_,) A is Buchsbaum.
Therefore we get x,Fea+(xy, ..., X,.,;)S. Since x,F 1s a form of degree
i+1 <k and x,FeK[x,, ..., x,] we obtain the contradiction x,Fea. =

€

Remark. Lemma !0 does not remain true if 4 is only locally Co-
hen—-Macaulay but not Buchsbaum. For this we will consider the curve C of
Pi given parameirically by {s'', s®¢3, st'9, (11},

Then the defining prime ideal I (C) of Cin S:= K [xg, ..., X3} is generated
by the following forms of degree = 4: I(C) = (x]—x3x,x;, x8—x,x],
x3x3—x?xy, xgx3—xix3, xtx,—x3x3, x,x3—x,x3). Since the primary
decomposition of (1(C)+ x,) = (x], x3, x4, xT x,) N (x5, x{, x3, x5, xox3, xT x,.
x, x3) we see that [H{,(S/1(C)+x38)], # 0. Consider the ideal I(C)+ x, then
[Ha(S/T(C)+x,8)], =0, that is, the integer a(H (4/I4)) depends on the
parameter /.

If A is Buchsbaum with depth(A4) > 0 then a(HS(A/1A)) = 1+a(H, (A))
for any parameter ! of degree 1. This follows from the exact sequence

0— Hi,(A/l4) » Hp(A)(—1) = H} (4)

Moreover, we claim that there are examples for our Lemma 10 with
[H(A/, ..., 1) A)]i-. # 0. For this we will study the following example.
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ExamprLe 11. Consider the Hilbert scheme Hji of curves of degree 8
and genus 5. Then a general curve of Hj has the following free resolution

(see [14]):
0 — O:(—6) = Of:(—5) = Ops(—4) > Ops = O > 0.

Hence k = 4 and the Castelnuovo regularity of C, denoted by reg(C) = 4. Let
A be the K-algebra K [x,, ..., x3]/I(C). Then e(H(A4)) < 2. Moreover, C is
arithmetically Buchsbaum with invariant i(C) = 2 since the Hartshorne—Rao
module of C is a vector space of dimension 2 (see [28]). Lemma 10 and the
above remark show that 3 =k—1<a(Hn(A/IA) =a(H)(A)+1 for any
parameter ! of degree 1. Hence dim [HY (A/I4)], = dim,[H}(A)], = 2.

m

Also, Lemma 10 has some interesting consequence even for the degree of
subvarieties.

CororLArRY 12. Let V < P" be an irreducible, reduced and nondegenerate
subvariety not lying on a hypersurface of degree < k. Assume that V is
arithmetically Buchsbaum then we have

codim (V)+ k' —1

d V)2

) where k' = max {k—1, 2}.

Proof. Consider a generic section X:= VA L,_, where n=dim(V). It
follows from Lemma 10 that X is not lying on a hypersurface of degree < k— 1.
On the other hand, X 1s not lying on a hyperplane by Bertini’s theorem (see
also [33], Lemma 3 or [13] on p. 174). Thus X is not lying on a hypersurface of
degree < k’. Hence

r—n

degree (V) =deg(X) = hy(k'—1) = (r—n+k B l). ]

CoROLLARY 13. In addition to the hypothesis of Corollary 12, suppose that
codim(V) = 2. Then we have

e -
( 5 ) if ris odd,
degree(V) = < 1
(4Ti(V))
L ‘ 5 if v is even,

where i(V) is the Buchsbaum invariant of V.

Proof. Corollary 12 shows degree (V) = (X). Applying the following beauti-
ful result of Mei-Chu Chang [5, 6] we get Corollary 13:
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r—2

—4i(V) i r 1s odd,
r—1

—1
%41’(V) if r is even,

where t is the smallest degree of a form contamed in I(V). m

Before stating the main result of this section we will prove a lemma. We
introduce first the following notation:

Let a be an ideal of a ring A and let N be a submodule of an A-module M.
We set N:ya={meM:a-m<= N}. Moreover, we recall the definition of
Castelnuovo’s regularity.

DeriniTiON. Let A be a graded K-algebra and let M be a finitely generated
graded A-module. Let m be an integer. We say that M is m-regular (in the sense
of Castelnuovo and Mumford [25]) if for the graded local cohomology
modules [H,, (M)]; =0 for all i and j with i+j>m.

The Castelnuovo regularity reg(M) of M is defined by
reg(M) = inf {meZ such that M is m-regular}.

It is well known that the regularity particularly provides upper bounds for
the degrees of the syzygies of free resolutions of a homogeneous ideal of S (see
for basic facts on Castelnuovo’s regularity, for example, [10], [27]). If V is
a subscheme of P™ we then set reg(V):=reg(/(V)) where [(V) is the
homogeneous ideal defining V.

LEMMA 14. Let A:= S/a be a Buchsbaum K-algebra of Krull-dimension
n+1>2 and depth>0. Let {l,,...,1,}, 1 <e<n, be a part of a system of
parameters of A of forms of degree 1. Then we get

reg(S/a) = reg(SHa+(,, ..., I,)S): ;m).
Proof. Applying Lemma 2 of [32] we obtain
reg(S/a) = reg(S/a+!, S):m)=... = reg(_S/(...((a+l1 S): m)+ ... +le,S):m)
= reg(S/a+(l, ..., 1) 5):m)
by using Proposition 1.1.10 and Corollary 1.1.11 of [31]. =

THEOREM 2. Let V < P" be an irreducible, reduced and nondegenerate
subvariety. Assume that V is arithmetically Buchsbaum and not lying on
a hypersurface of degree < k. Then we have

degree(V)—1
codim(V)+k'—1
k'—1

reg(V) < (k' —1) k ) } +p+1=:H(d, k)
~1
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where k' = max [k—1, 2}, and

dim(V)+¢
p = min {teN:(Co 1mt( )+ )>degree(V)_

1— codim{(V)+k'—1 1 - degree(V)—1 \
k'—1 : {(codim(V)+k’—1)_l}"

kK —1

Proof. Applying Bertini’s theorem and the uniform position lemma of [15]
we consider a generic section X := V' L__, such that X is a finite set of points
in uniform position. It follows again from Lemma 10 that X is not lying on

a hypersurface of degree < k'. Therefore Lemma 4 and Lemma 14 yield our
statement. =

Let us consider the special case of Cohen—Macaulay varieties. We then
obtain the following

CoRroOLLARY 15. Let the situation be as described in Theorem 2, hut we
assume that V is arithmetically Cohen-Macaulay. Then we get

(i) reg(V) < H(d, k).

(1i) The defining ideal I(V) of V is generated by forms of

degree (V) < E(d, k):= (k—1) {degreem"codimm] +1,

codim(V)+k—1 _q
k—1

where

dim(V})+1t
q:=min{teN:(CO 1mt( )+ )>degree(V)

i codim(V)+k—1 degree (V) —codim (V)
_ V)— —1 .
codim (V) (( k-1 ) ){ codim (V) + k—1 J}
k—1 d
Proof. (1) follows from the proof of Theorem 2 by using k = k.
(i) results from our Lemma 4 and Lemma 5.1 of [2]. m

ExaMmpLE. Let C¢ be an irreducible, reduced and nonsingular curve in P2 of
degree 6 and genus 3 which is arithmetically Cohen—-Macaulay. Then we have
the following free resolution of C3 (see, e.g., [31], p. 17):

0 — S3(—4)— S*(—3) > S - S/I(C2) - 0.

Hence k =3 and the example shows that the bounds of Corollary 15 are
sharp.
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Remark. Our approaches of Lemma 4 and Corollary 16 also give us the

possibility to improve and extend results of [35]. This results from the
following estimations of our integers H(d, k') and E(d, k):

, (k'=1)(k"=2)
HUd, k) < {5&.}5 V)} ["‘—4—]’

: (k" — 1)(k'
H(d. ) < codlm(V)} }

if codim(V) =3 or d = k*+k—3, where d = degree(V).

Moreover we have:

d (k—1)(k—2)
Eld. b < {codim(V)}bl: 4 ]

d (k—1)(k—2)
E@ k)< {codim(V)}_[ 2 ]

if codim(V)=3 or d > k*+k—3.

Finally, we prove new bounds on the geometric genus of arithmetically
Buchsbaum varieties.

THeOREM 3. Let V < P be an irreducible, reduced and nondegenerate
subvariety. Assume that V is arithmetically Buchsbaum and not lying on
a hypersurface of degree < k. Then we have

p, (V)< G, Kk, n)
with k' = max {k—1, 2}, d = degree(V) and n = dim (V).

Proof. Lemma 10 and Theorem 1. m

4. Bounds on the geometric genus
of projective varieties of codimension 2

In this section we will strengthen the result of Corollary 6 in case of
codimension 2. We will also consider subvarieties ' which are complete
intersections of two hypersurfaces of degree, say a and b. Then V is said to be
a complete intersection of type (a, b).

THEOREM 4. Let V = P" be an irreducible, reduced and nondegenerate
subvariety of codimension 2 and degree d. Assume that V is lying on an irreducible
hypersurface of degree k. Then we have the following bounds on the geometric
genus of V-
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(1) If d > k(k—1), then

P (V) < (k+i—2)+(k+(r::;;—2)_(k:1)_(c:1) _Fd R,

where ¢ = {{} and ¢ = kc—d.

(ii) If d < k(k—1), then p,(V) < F(d, {£}). Moreover, if V is smooth and is
linked to a complete intersection of type (1, €) by a complete intersection of tvpe
(k, c) then p, (V)= F(d, k).

Proof. Consider a generic section X = V'~ L, such that X is a set of
d points in uniform position. Lemma 4 shows that

X)— 1\, "™ ! - (i1
Pg(V)s(r(r—)2 )d—-:Z_z(f'—?’)hx(j):(r_z)d—'=z—’(i )XU)

for all I > r(X)—1 since hy (I) = d for these I. We set ¢;:= hy (i)—hy(i—1) then
we get

o e L) r () 2 ()

for I>0 by using Y5i-;(¢23) =(1l)—(5). Therefore we will study

S (e

Case 1. d > k(k—1). Since X < P?, we will apply Lemma 2. Using the
notation of Lemma 2, we obtain by Bézout’s theorem a =k and b = {{} = ¢.
We now claim

Cramm. Yio <Y, —1(GZ1)E;, where
(i+1 for 0<<i<k,
k for k<i<e,
C;=1< k+c—1—i for cLig<k+tc—e-2,
k+c—2—i for k+c—1—e<i<k+c-2,
L0 for izZk+c-2.

Proof of the Claim. We first note that Y !_,¢; =d =) i-(¢; for [ » 0, and
¢; and ¢, satisfy the conditions stated in Lemma 2. Assume that ¢; < ¢, for all i;
we therefore obtain ¢; = ¢; for all i. Let i > ¢ be the smallest integer with ¢; > ¢,.
Then there is an integer j > i such that ¢; < ¢;. We now consider two cases.

Case 1.1. j =i+ 1. We then substitute ¢; by ¢;—1, and ¢;,, by ¢;,,+1.



BOUNDS FOR CASTELNUOVO'S REGULARITY 177

Since ¢,—12¢,>¢,,,2c¢;,,+1 the new (s satisfy also the above two
conditions in the beginning of the proof of our claim. But the sum
3i.,—1(Z3)¢; with the new ¢s is not smaller than the old one.

Case 1.2. j > i+ 1. Then we substitute ¢; by ¢;—1, and ¢; by ¢;+ 1. Since
c;—12¢>C,,2¢4y, and ¢;_, 2¢;_, >C;=c;+ | the new ¢s satisfy
again the above two conditions. Also, the sum Z{L,_l(ii )¢, is again not
smaller.

If one of the new ¢;’s is again > ¢,, say, then we repeat this consideration.
It stops if ¢; = ¢, for all i. Hence we get our claim.

Therefore we obtain from ()

kdes2 £\
p,V< Y ( )c,-=F(d,k)

i=r-—-1 r—2

by using the following relation:

! NI VPN 2L P o AN s—n,
igs(nl—l)( USR] )—(nl t)( ny+1 ) " S+1)(”3+1)

+ t—n,+1 s—n,
ny+2 ny+2

for n,, n,, ny,5,teN with t =25 > n,+n,;. This follows, for example, by
induction on t.

Case 2. d < k(k—1). Then X does not lie on a hypersurface of degree
< {4}, that is, k > a > {{} and b > {¢} using the supplement of Lemma 2.
Applying the methods used in case 1, we obtain

! i—1 i i—1 i d
i=;—1 (7’—2) s ,-:{:_1 (r_z)"‘ - F(d’ {E})’ where

d
f 0<i -,
. {0

v-+-_.

E for d <i</¢
k SIS
d d
C. = - —1—i I\ = 37 /_1_2’
C, <{k}+c 1—i for c 1<{k}+c £
d
{E}-Fc —2—i for {g}-kc’—s’——l Si%{%}+c'—2,
L0 for i> {g}+c’—2,

d
where ¢ = {E—}} and ¢ = {§} ¢ —d.

12 — Banach Center t. 26, cz. 2



178 U. NAGEL AND W. VOGEL

This shows the first part of Theorem 4.

Proof of the second part. Let U and W be the complete intersections of type
(k. c) and (1, &), resp. Hence we get for the Hilbert function of U and W:

r+t¢ r+t—c r+t—k r+4t—k—c
hy(t) = - - + .
r r r r
that is,
4y (1) = (Hl-l)_(l+;—c)_(l+;—k)+(l+t:k—c)’

where A™h:= A(4™ 'h) for m>0 and A°h=h, and h,(t)=(;1{"
—(""1*179), that is,

t t—e 1 for0<t<e—1
Ar—l h — _ — =~ ~ >
wlt) (O) ( 0 ) {0 otherwise.

It follows from liaison that V is arithmétically Cohen-Macaulay (see, €.g., [31],
Theorem III.1.2). Let {,, ..., |,_, be forms of degree 1 of the polynomial ring
S:=K[x,, ..., x,] defining a system of parameters of S/I (V) and S/I (U) where
I(X) is the defining ideal of the subvariety X. Since for all
t 2 k+c—1=reg(l(U)) we have [SAI (U)+(ly, ..., 1,_,)S)], =0, we obtain
for all t 2 k+c—1

(%%) A"V hy (1) = rankg [S/I (V) + (g, ..., ,_2) )], = 0.
It is easy to see that
Coft—itr-2Y\ . _, .
hV(')‘Eo( o )A hy ()
k+c—2 3 —
= X (' o Z)A"lhy(i) by (xx).
i=0 r—2

Applying Theorem 3 of [8] we therefore obtain

k+c-2 3 _
(t rr 2)[A"‘hu(i)—A""h,,,(k+c—2—i)]

i=o r—2
ke fp—i4r—2
= hylt)- (
y i=k+§;1—e r—2

t—k—c+e+r t—k—c+r
=noto-(T)(TIT)

Considering these Hilbert functions for ¢ > 0 we get the corresponding Hilbert
polynomials:

t—k—c+e+r t—k—c+r
pvll)=pu(t)—( )+( )

r—1 r—1

N
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Therefore we have for the arithmetical genus of V (see, e.g., [25], p. 76):

k+c—e—2\ [k+c=2
Pa(V)=(—1)'_2(py(0)—1)=pa(U)+( te-e )_( +e )

r—1 r—1

(k+c—2) (k+c—a—2) (k—l) (c—l)
= + - — .
r r—1 r r
Since V is arithmetically Cohen—Macaulay we have

Py () = KOV, €, ) (=172 W2 (V, 6, (1),

Since V is reduced and irreducible we get h°(V, @) = 1. Since V is smooth we
finally obtain

p,(V)=H"2(V, Oy) = (= 1Y " *(p, (@ —1) = p,(V) = Fd, k).
This shows the second part of Theorem 4, q.e.d.

Remark. For curves in P? our Theorem 4 yields the bounds on the genus
proved by J. Harris in [15], p. 198.

5. Bounds on the genus of curves in P’

Let a be a homogeneous ideal of the polynomial ring S:= K [x,, ..., x,] such
that S/a has Krull-dimension 2. We then write the Hilbert polynomial, say
p.(t), of a as follows:

p.(t) = degree(a)t—g+ 1.

If a is the defining ideal of a curve then g is said to be the genus of this
curve. We set e: = e(HZ(S/a)). This is a very important invariant of a curve and
was known already to F. Gaeta.

LEMMA 16. Let a © K [xq, ..., X,] be a homogeneous ideal of degree d with
Krull-dimension 2. Assume that depth(S/a) > 0 and a does not contain a form of
degree < k. Then we have

+¢ .
gsdl—(rt >+1 for all ¢+ with e <t < k.

Proof. The Hilbert function h,(t) = rank,[S/a],. It follows from [30]
that h,(t)—p.(t) = —rank, [H}(S/a)],+rank, [H2(S/a)],. Hence (;)—dt
+yg—-1<0fore<t<k m

THEOREM 5. Let C <= Py be a curve, that is, a 1-dimensional projective
scheme which is locally Cohen—-Macaulay. Assume that C is not lying on
a hypersurface of degree < k. We set d = degree(C), and I(C):= length of
@z H' (C, Pc(5) over K [xg, ..., x,] where P is the ideal sheaf of C. Suppose
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that d+1(C) < (*1272)+1 then we get the following bound on the genus

g of C:
gda-(“")ﬂ,
.

where x = d—(*75%)+k—=2+1(C).

Proof. We have the following bound for Castelnuovo’s index of regularity:
k+r—2
reg(C) < d—( r' 1 )+k+I(C).

The first proof of this useful result was given in [34]. (Further proofs
are developed in [26], [1]) Since e+3<reg(C) we get e+l
<d—(*"1%)+k=2+1(C) =2 < k—1, by assumption. Hence e < k—2, and
Lemma 16 gives our theorem for t = x. m

CoroLLary 17. Let C = P? be an arithmetically Buchsbaum curve not lying
on a hypersurface of degree < k. Assume that k* > 2(d—1) then we have:

< dﬂ—(ﬂ;—3)+l, where f§ = d—(§)+|:§:|—2.

Proof. 1t follows from the beautiful structure Theorem of Amasaki [3]
for arithmetically Buchsbaum curves in P? (for other proofs see [5]. [11])
that t = 2i(C) where i(C) 1s the Buchsbaum tnvariant of C and ¢ is the smallest
degree of a form contained in I(C). Therefore we obtain e < f < ¢ (see the
proof of Theorem 5). Lemma 16 gives again our corollary. m

CoroLLARY 18. Let C < P" be an irreducible, reduced and nondegenerate
arithmetically Buchsbaum curve not lying on a hypersurface of degree < k.
Assume that degree of C:=d < ("X 1) +r—1, where k' = max {k—1, 2). Then
we have

<dk'—1)— k”kl_l)ﬂ.

Proof. Theorem 2 and our assumption on d yield ¢+3 < reg(C)

<(k'—=1)+1+1. Hence e<k’'—1 <k Lemma 16 gives our assertion for
f=k'—1. m

Finally, we will improve Theorem 3 in case of space curves.

THEOREM 6. Let C = P" be an irreducible, reduced, nondegenerate and
arithmetically Buchsbaum curve not lying on a hypersurface of degree < k. We
set k'=max{k—1,2} and define integers m and & such that d—1=
m{("*K 13 —1]+¢ with d = degree(C), and 0 < e < ("t 12)=2. Moreover,
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we set p:=min{teN:("" ") >¢}, and q:=max{teN:(""|"")<d}. Then
we get

qd+1—(r-;q)—i(C) <g<Gd, K, 1)—i(0)

m+1\ r+k'—=2 r+k'—1
-("3 w5 el ()
+(e+1)[m(k’—~1)+p-1]+1—(r+€—1>~i(C),

where i(C) is the Buchsbaum invariant of C.

Proof. Consider a general hyperplane section X: = C n H such that X is
a set of d points in uniform position. Let 4 be the homogeneous coordinate
ring of C. Then we have

he()—he(t—1) = hy (1) + [ho(A/LA)],,

where L is a linear form defining H. Hence we obtain for an integer [ > 0:

¢
dl—g+1=h(h= 5 [he(t)—he(t—1)]+1
=1

1 {
=1+ he()+ Y [h(4/LA),,
1=1 r=1

that is, g = )| (d—hy(1))—i(A/LA), where i(A/LA) is the Buchsbaum in-
variant of the 1-dimensional Buchsbaum K-algebra A/LA. Since C is arith-

metically Buchsbaum we have [H} (A4)],_, = [HS(A/LA)],. This follows from
the exact sequence

0 — HO(A/LA) — HL(A)(=1) > HL(A) > ...

Hence we thus get

!

(%) Z d—hy (1) —i(C).

We note that this relationship (*) was also obtained by Ciliberto [7] on p. 31.
Let hy be a lower estimation of h, having the property of Theorem 1.
Using the notation of Theorem 1 we therefore obtain

g < Z(d Ry (8)—i( Z (d—hx@)—i(Cy=G(d, k', 1)—i(C).
t=1 L=
This shows the upper bound.
Proving the lower bound of Theorem 6 we first note that h, () < ("71*Y)
for all t 2 0. Hence we get from (x)



182 U. NAGEL AND W. VOGEL

!
o+10 = ¥ la=h@)> 3 (a=("" 7)) aa-("T )1

(=1

ExampLE. Consider again the curve C of Example 11, that is, a curve of

degree 8 and genus 5 not lying on a hypersurface of degree < 4. The lower and
upper bound of Theorem 6 i1s 5. Indeed we have g = 5.
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