Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

Measure-additive coverings and measurable selectors

Seria
Rozprawy Matematyczne tom/nr w serii: 260 wydano: 1987
Zawartość
Warianty tytułu
Abstrakty
EN

CONTENTS
Introduction.............................................................5
1. Measurable spaces with negligibles....................6
2. Ka-regular spaces.............................................16
3. Analytic-additive families...................................30
4. $AF_1$ and $AF_{<ω}.....................................48
5. $AF_ω$ and $AF_∞$.......................................54
6. Measure theory.................................................56
7. Baire category...................................................66
8. Miscellaneous examples....................................76
9. Almost continuous functions..............................81
10. Measurable selectors......................................86
11. Measure-additive families of functions.............95
12. Examples.........................................................98
13. Problems.......................................................105
References.........................................................109
General index......................................................112
Index to special symbols and abbreviations........115
Słowa kluczowe
Tematy
Miejsce publikacji
Warszawa
Copyright
Seria
Rozprawy Matematyczne tom/nr w serii: 260
Liczba stron
116
Liczba rozdzia³ów
Opis fizyczny
Dissertationes Mathematicae, Tom CCLX
Daty
wydano
1987
Twórcy
  • University of Essex, Department of Mathematics, Wivenhoe Park, Colchester CO4 3SQ, England
Bibliografia
  • [1] J. M. Aarts and D. J. Lutzer, Completeness properties designed for recognizing Baire spaces, Dissertationes Math. 116 (1974). 7Ka.
  • [2] B. Aniszczyk and R. Frankiewicz, Theorem on completely additive family of real-valued junctions, Bull. Acad. Polon. Sci. (Math.) 34 (1986). 597 598. 11C. 12H.
  • [2a] J. E. Baumgartner, Applications of the Proper Forcing Axiom, 913-960 in [44]. 3L.
  • [3] N. Bourbaki, Intégration, Chap. IX, Hermann, 1969 (Actualités Scientifiques et Industrielles 1343). 6Ha.
  • [4] J. Brzuchowski, Point-arity: the new cardinal index for ideals, 1981. 1Nh, 5G.
  • [5] J. Brzuchowski, J. Cichoń, E. Grzegorek and C. Ryll-Nardzewski, On the existence of non-measurable unions, Bull. Acad. Polon. Sci. (Math.) 27 (1979), 447-448. 8E.
  • [6] L. Bukovsky, Any partition into Lebesgue measure zero sets produces a non-measurable set, Bull. Acad. Polon. Sci. (Math.) 27 (1979), 431-435. 6F, 7O.
  • [7] G. Choquet, Lectures on Analysis, Vol. I. Benjamin, 1969. 7Hb, 7Ma.
  • [8] W. W. Comfort and S. Negrepontis, The Theory of Ultrafilters, Springer-Verlag, 1974.
  • [9] W. W. Comfort and S. Negrepontis, Chain Conditions in Topology, Cambridge U. P., 1982. IE.
  • [10] G. Debs, Stratégies gagnantes dans certains jeux topologiques, Fund. Math. 126 (1985), 93-105. 7Hb.
  • [11] K. J. Devlin, Aspects of Constructibility, Lecture Notes in Mathematics 354, Springer-Verlag, 1973. 1M, 4H.
  • [12] K. J. Devlin, Constructibility, Springer-Verlag, 1984.
  • [13] E. Ellentuck, A new proof that analytic sets are Ramsey, J. Symbolic Logic 39 (1974), 163-165. 7Q.
  • [14] A. Emeryk, R. Frankiewicz and W. Kulpa, On functions having the Baire property, Bull. Acad. Polon. Sci. (Math.) 27 (1979). 489-491. 7 Notes. 9A-9B.
  • [15] A. Emeryk, R. Frankiewicz and W. Kulpa, Remarks on Kuratowski's theorem on meagre sets, Bull. Acad. Polon. Sci. (Math.) 27 (1979), 493-498. 7Kd, 7 Notes.
  • [16] W. G. Fleissner, An axiom for nonseparable Borel theory, Trans. Amer. Math. Soc. 251 (1979), 309-328. 1M, 3J-3L, 3Q, 3 Notes.
  • [16a] W. G. Fleissner, Left separated spaces with point countable bases, Trans. Amer. Math. Soc. 294 (1986), 665-677. 3M, 3N.
  • [17] W. G. Fleissner, R. W. Hansell and H. J. K. Junnila, PMEA implies proposition P, Topology Appl. 13 (1982), 255-262. 3Q, 3 Notes.
  • [18] R. Frankiewicz and K. Kunen, Solution of Kuratowski's problem on function having the Baire property, Preprint 360, Institute of Mathematics, PAN, Warsaw (March 1986), 4I, 7G, 12G.
  • [19] R. Frankiewicz and A. Gutek, Remarks on the decomposition of spaces on meagre sets, Bull. Acad. Polon. Sci. (Math.) 30 (1982), 91-96. 7J, 7Kd.
  • [20] R. Frankiewicz, A. Gutek, S. Plewik and J. Roczniak, On the theorem on measurable selectors, Bull. Acad. Polon. Sci. (Math.) 30 (1982), 33-40. 2K, 10E.
  • [21] D. H. Fremlin, Topological Riesz Spaces and Measure Theory, Cambridge U. P., 1974. 6A, 6E, 6H.
  • [22] D. H. Fremlin, Measurable functions and almost continuous functions, Manuscripts Math. 33 (1981), 387-405. 6F, 6I, 6M, 9E, 12E.
  • [23] D. H. Fremlin, Measurable selections and measure-additive coverings, pp. 425-428 in [39]. 1Bd, 1Na, 5H.
  • [24] D. H. Fremlin, Consequence of Martin's Axiom, Cambridge U. P., 1984. 1E, 1L-1N, 2 Notes, 3D-3E, 3Q, 6A-6B, 6E-6H, 7F, 7K-7M, 7P, 8F, 9D-9E, 11E, 12A, 12D, 13Aa.
  • [25] D. H. Fremlin, On the additivity and cofinality of Radon measures, Mathematika 31 (1985), 323-335. 13Aa.
  • [26] D. H. Fremlin, Atomlessly-measurable cardinals and Martin's axiom, Note of 23. 8. 85. 1M.
  • [27] D. H. Fremlin, R. W. Hansell and H. J. K. Junnila, Borel functions of bounded class, Trans. Amer. Math. Soc. 277 (1983). 835-849. 1K, 13Cf.
  • [28] Z. Frolik and P. Holicky, Decomposability of completely Suslin-additive families, Proc. Amer. Math. Soc. 82 (1981), 359-365. 3E, 3 Notes.
  • [29] F. R. Halmos, Measure Theory, Van Nostrand, 1950. 6J.
  • [30] R. W. Hansell, Borel measurable mappings for nonseparable metric spaces, Trans. Amer.
  • Math. Soc. 161 (1971), 145-169. 3I.
  • [31] R. W. Hansell, Some consequences of (V = L) in the theory of analytic sets, Proc. Amer. Math. Soc. 80 (1980), 311-319. 3K.
  • [32] R. W. Hansell, Borel-additive families and Borel maps in metric spaces, pp. 405-416 in [52]. 13Cf.
  • [33] R. W. Hansell, Point-countable Souslin-additive families and sigma-discrete reductions, pp. 254-260 in [54]. 3D, 3K, 3N, 3 Notes, 13Ce.
  • [34] R. W. Hansell, Hereditarily-additive families in descriptive set theory and Borel measurable multimaps, Trans. Amer. Math. Soc. 278 (1983), 725-749. 3A.
  • [35] P. Holicky, Remark on completely Baire-additive families in analytic spaces, Comment. Math. Univ. Carolin. 22 (1981), 327-336. 8D.
  • [36] J. E. Jayne and C. A. Rogers, K - analytic sets, pp. 1-183 in [57]. 2A-2B, 3H.
  • C371 T. J. Jech, Set Theory, Academic Press, 1978. 1K-1M, 2F, 3H, 35, 6D, 8H.
  • [38] J. Kaniewski and R. Pol, Borel-measurable selectors for compact-valued mappings in the non-separable case, Bull. Acad. Polon. Sci. (Math. Astronom. Phys.) 23 (1975), 1043-1050. 3I.
  • [39] D. Kölzow and D. Maharam-Stone (eds.), Measure Theory (Oberwolfach 1981), Lecture Notes in Mathematics 945, Springer-Verlag, 1982.
  • [40] G. Koumoullis and K. Prikry, The Ramsey property and measurable selectors, J. London Math. Soc. (2) 28 (1983), 203-210. 2G, 6M.
  • [40a] G. Koumoullis and K. Prikry, Perfect measurable spaces, Ann. Pure Applied Logic 30 (1986), 219-248. 2H.
  • [41] K. Kunen, Set Theory. North-Holland, 1980. 1M. 3J, 4I, 8H, 13Ab.
  • [42] K. Kunen, Random and Cohen reals, 887-911 in [44]. 1M, 6 Notes.
  • [43] K. Kunen, A. Szymański and F. D. Tall, Baire irresolvable spaces and ideal theory, Ann. Math. Sil. 14 (1986), 98-107. 12F.
  • [44] K. Kunen and J. E. Vaughan (eds.), Handbook of Set-Theoretic Topology, North-Holland, 1984.
  • [45] K. Kuratowski, Quelques problèmes concernant les espaces métriques non-séparables, Fund. Math. 25 (1935), 535-545. 4 Notes, 9 Notes.
  • [46] K. Kuratowski, Topology, Vol. I, Academic Press, 1966. 1H, 2K, 3G, 7A-7B, 7E, 9A, 9I.
  • [47] K. Kuratowski, A theorem on ideals and some applications to it to the Baire property in Polish spaces, Russian Math. Surveys 31:5 (1976), 124-127. 7O.
  • [48] K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. (Math. Astronom. Phys.) 13 (1961), 397-403. 10 Notes.
  • [49] A. Louveau and S. G. Simpson, A separable image theorem for Ramsey mappings, Bull. Acad. Polon. Sci. (Math. Astronom. Phys.) 30 (1982), 105-108. 7Q.
  • [50] D. Maharam, On smoothing compact measure spaces by multiplication, Trans. Amer. Math. Soc. 204 (1975), 1-39. 61.
  • [51] A. R. D. Mathias, An elementary argument in measure theory, Note of 20.11.79. 6F, 70.
  • [52] L. F. McAuley and M. M. Rao (eds.), General Topology and Modern Analysis, Academic Press, 1981.
  • [53] Y. N. Moschovakis, Descriptive Set Theory, North-Holland, 1980. 3C.
  • [54] J. Novak (ed.). General Topology and its Relations to Modern Analysis and Algebra. V (Proceedings of the Fifth Prague Topological Symposium, 1981), Sigma Series in Pure Mathematics 3, Heldermann, 1982.
  • [55] R. Pol, A note on the decomposition of metric spaces. I, Fund. Math. 95 (1977), 95-103. 35.
  • [56] R. Pol, A note on the decomposition of metric spaces. II, Fund. Math. 100 (1978), 129-143. 3 Notes.
  • [57] C. A. Rogers (ed.), Analytic Sets, Academic Press, 1980.
  • [58] F. Rothberger, Eine Äquivalenz zwischen der Kontinuumhypothese und der Existenz der Lusinschen und Sierpinskischen Mengen, Fund. Math. 30 (1938), 215-217. 1M.
  • [59] V. V. Sazonov, On perfect measures, Amer. Math. Soc. Transl. (2) 48 (1965), 229-254. 6Aj.
  • [60] L. Schwartz, Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures, Oxford U. P, 1973. 6Ha.
  • [61] J. Silver, Every analytic set is Ramsey, J. Symbolic Logic 35 (1970), 60-64. 7Q.
  • [62] B. S. Spahn, A representation theorem for compact multifunctions, Fund. Math. 117 (1983). 209-215. 10E. 1F.
  • [63] M. Talagrand, Pettis integral and measure theory. Mem. Amer. Math. Soc., 1984 (vol. 51, no. 307).
  • [64] A. Tarski, Ideale in vollständige Mengenkörpern. II, Fund. Math. 33 (1945), 51-65. 1K.
  • [65] S. Ulam, Zur Masstheorie in der allgemeinen Mengenlehre, Fund. Math. 16 (1930), 140-150.
Języki publikacji
EN
Uwagi
Each reference is followed by a list of the paragraphs referring to it.
Identyfikator YADDA
bwmeta1.element.zamlynska-036aedda-c2af-4661-ab97-1f841e40f35a
Identyfikatory
ISBN
83-01-07403-5
ISSN
0012-3862
Kolekcja
DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.