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1. Introduction

We consider the problem
Lu= —edu+bVu+cu=f in Q<R¥ Nz2,
u=0 on Il =00

with the small parameter 0 < e € 1. The qualitative behaviour of the solution
1s characterized by the existence of boundary layers (narrow regions where the
norms |lull,.,, k = 1, are not bounded independently of &). Denoting by n the
unit outer normal to Q and by I'"(I"°, I' ") the parts of I" where bn is less than
(equal to, greater than) zero, normally we have a boundary layer of thickness
O(\/Elln\/gl) along I'° and a boundary layer of thickness O(e|lneg|) along I'™.
Due to these boundary layers, the application of standard finite element
methods results in undesired oscillations in the numerical solution u, unless the
discretization parameter h is very small. These oscillations can spread over
a region much larger than the boundary layer. So, one is interested in finite
element methods which preserve the monotony behaviour and/or result in
e-independent error estimates at least in subdomains where boundary layers
are excluded (local estimates). We present a short survey on the most
interesting trends and some new results in this field.

2. The hybrid upwind FEM
and the discontinnous Galerkin method

The weak formulation of our problem is:
Find ue H{(Q) such that

(L.u,vy:= a(u,v):=¢eVu, Vo) +(bVu,v)+(cu,v) = {f,v)
for all veH{(Q).
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In this section, let fe I2(Q), be(Wh2(Q)), ce W'=(Q).

As it is known, for ¢ > 0 or c—4divb = 0 the differential operator L, is
inversely monotone; hence e.g. follows the unique solvability of Lu = f.

For the sake of simplicity we restrict ourselves to the case Q < R?, but this
restriction is not essential.

Let Q be a polygonal convex domain. We divide Q into triangles with
angles less or equal m/2 (triangulation of “weakly acute type”). Let a trian-
gulation (J,) be regular in the usual sense and let 4 denote the maximal
diameter of all triangles. We call such a triangulation a general one in order to
distinguish it from a uniform triangulation, i.e. one in which every two adjacent
triangles form a parallelogram.

Let

V,= {U;;EC(Q):UHTEPl(T)}: Voo = {v,eVioylr = O}

denote spaces of piecewise linear functions.

We consider also a dual decomposition of Q@ which is constructed as
follows: To each node P, there corresponds a dual polygon D, bounded by
parts I';; of the medians (one also could choose the mid-perpendiculars, this
would give no difference in the results) of adjacent triangles.

We will use the notation:
A; — set of indices of the nodes adjoining to P,,

n; — outer unit normal to D,.

Let ¥, = {i,:v,|p, € Po(D;)} denote the space of piecewise constant func-
tions. We use two interpolation operators I,: C(2)—~V, and ~: C(Q)— 7,
defined by (I,v)(P;) = v(P,) and 4(P,) = v(P,) for all nodes P,.

The hybrid upwind FEM is described as follows:

Find u,eV,, such that

vy, vy) = &(Fuy, Vo) + by, ) + (64, 0) = (f.5,),  v,€ Von,
where

by(uy,0y) = zvh(Pi)Z/jij(lij— 1)(“;1(}31)*”:.(});))

Bij = I bndl';, Ay=%(1+sgnf).

rij

and

According to this choice of the A;; we can state that the part B, of the
Galerkin matrix which is descended from the convection term is of
non-negative type (that means, B, is off-diagonal non-positive and the sum of
the elements in each row of B, is non-negative).

The weakly acute type of triangulation is needed to ensure that the
non-negative type of the Galerkin matrix is not disturbed by the diffusion term.
Moreover, one may easily prove that for ¢ 20 (or ¢ —4divhb > ;> 0 and
sufficiently small h) the Galerkin matrix becomes an M-matrix. Thus, by this
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rather simple method the preservation of inverse monotony is guaranteed (and
in this fact lies the importance of the hybrid upwind FEM). Regarding the
localization of boundary layers, the hybrid upwind FEM is not as successful as
some of the methods described in the following sections, but nevertheless local
estimates have been proven:

THEOREM 1. If ¢:= max(s, h) sufficiently small,
bl 2b, >0, |bnl=b,>0 on I,

no characteristic of the reduced equation starts from I'°, and ue W>2(Q) then
there exist constants C,, C, independent of &, h such that for all Q' = Q with

dist(,I%) = C,/ollng|, dist(€, ") > C,o|lng|

and with a uniform triangulation of Q\Q’, we have

||uh—1h““0m’ %= a+\/ﬁ).
If we additionally assume ¢ >0, ue W“’(Q)

dist(2, %) > C,./ollnclnkl, dist(2,I'*) > C,ollnclnh.

then |luy—ILullo .0 < C,h'Y27%, with an arbitrary x > 0. Moreover, if the
whole domain Q is trlangulated uniformly, we get

-—x

lu,—Lyullo,2.00 < Coo and i, — I ullo, .00 < C2‘71

For a more detailed presentation of the results and a sketch of the proof
see [117]; some weaker results but with all details of the proof can be found
in [10].

In the case ¢ =0 there is a simple possibility to generalize the hybrid
upwind FEM to higher order approximations, namely the discontinuous
Galerkin method:

Let the finite space V, consist of all functions v, which are on each element
polynomials of degree < k (they need not be continuous); let

Vou:={v,eV,, v,=0 on 0Q}
For u,,v,eV,, let (bVu,,v,) be approximated by

b,(u,,v,):= (bVu,,v,)+ Z j bn| (s —uy) v,ds
TeT) 0T —
where T~ is the part of T on which bn < 0 and ;" ~(x) = lim u,(x+1b) if the
t=+0
limit exists and u; '~ =0 elsewhere.
The discrete problem now consists in finding wu,eVy, such that
b (u,,,vh)+(cu,,,v,,) (f Uh for all V€ VOh-
Obviously, if we choose as our triangulation the dual decomposition of
Q defined for the hybrid upwind FEM, the discontinuous Galerkin method for
= ( leads to the same discretization as the hybrid upwind FEM. Regarding
some properties and error estimates for the discontinuous Galerkin method see

e.g. [3].
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3. The streamline diffusion FEM

The streamline diffusion FEM (SDFEM) of Hughes—Brooks [1] preserves the
localization properties of the hybrid upwind FEM (Th. 1) but in general not
inverse monotony. Other features of SDFEM are additional control on the
streamline derivative du,/éb and high-order error estimates. Let (7,) be
a regular triangulation of Q and let

Vi= {UhGC(Q)WMTEPk(T)}s Vor = {vy€ V} 104l = 0}
be spaces of piecewise polynomials of degree k > 1. With the perturbed
bilinearform on V,x ¥,
as(uy, v):= a(u,v)+ Y, (L, b-Vu,)y,

TeT ),

the SDFEM reads:
Find u,eV,, such that

az(uy,vy) = (v, +0b-Vu,) Vo, e ¥y,
Global convergence results are stated in
THEOREM 2. Let ¢c—3divh = a, > 0 and 6 < Ch®. Then
lmfu—uyly 2,0 =0
h=0
for fixed e>0 and ueW'*(Q). If additionally ue W'*'*(Q) and

&= Ch, 1 <1<k, then there exist a constant C independent on &, h such that
for e £ Ch

l—,lo, 2.0+ /b P (=)l 2.0+ /Elu—th1.2.0 < CH*upy s 0.
Furthermore, we have local error estimates:

THEOREM 3. Let the assumptions of Theorem 1 be fulfilled and let the
constants C; = C,(l), C, = C,(I) be sufficiently large. If ue W'*13(Q') then

lu—ttallo.2.n + /BUb V=)o g+ /elu—tls 2,00 < CHFH2, 1 <I<k

holds for all Q" = Q', with C independent on ¢, h. If additionally u € W'*1*(Q),
then
e —uyllo,c,0 < CH T2,

For a proof of the error estimates in integral norms, see [9]. The W' 2-
convergence result and the (non-optimal) local L_-estimates can be found in
[6]. Note that the results of Theorems 2, 3 remain valid in case of ¢ = 0 (with
the relaxed condition 0 <[ < k).

Although the question of optimal local L _ -estimates seems to be open for
SDFEM, in a recent paper [4] an improved estimate was given in the special
case k = 1 for a modified SDFEM. The diffusion term &(Pu,, Vv,) is weighted
in the crosswind direction b7 for small e.
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With

b"Vu, b7V,
bT|  1bT| /°
e if & 2 k2,

SRR il < k2,

dy(uy, vy) 1= az(uy,v,)+(E—e) (

this method reads:
Find 4, € V4, such that

dﬁ(uh’ Uh) = (f; DIJ + 5 b ’ Vvh) Vvh € VOII'

Under similar assumptions to those of Theorem 3, we have in the special case
b =(1,0)" the estimate

lu—ttgllo, w0 < Ch3*|Inh|.

Furthermore, the thickness of a numerical boundary layer at I'° or of interior
layers along a streamline is shown to be of order /134 |Inh| rather than ﬁ |Inh).
Unfortunately, the estimation technique of [4], which is essentially based on
the crosswind correction of the diffusion term, does not allow analogous results
for the original SDFEM.

4. Asymptotically fitted FEM’s

In order to achieve information on convergence properties in the boundary
layers, global error estimates which are valid uniformly with respect to ¢ (say,
for e € Ch) are desirable. For the modified SDFEM, under similar assumptions
to those of Theorem 3 and for simple boundary and interior layer structures
with ¢||dullo 1 0+ 2.0 < C, we have

lu—t,llo.1.0 < CS/RIIN>?hH|  if &< k32,

A well-known way to derive umiformly in ¢ converging methods is
“asymptotical fitting”. Recently, Schieweck [12] proposed an exponential —
fitted Galerkin FEM with adding some boundary layer — like test functions to
Vor- In case of h;,b, > 0on € =(0,1)x(0,1) and k = 1 he derived the global
estimate

lu—tyllo.2.0+ /elu—ty1.2.0 < C(/e+/h+e/h)")

with m > 0, arbitrary. Unfortunately, this method is too complicated in the
case of a complex geometry for @ < RY,N > 2.

Another way consists in asymptotical-fitting of boundary values. The
method is based on the observation that any unrefined mesh cannot resolve for
¢ < h the downstream layer at I'*, and for ¢ < h*2, the characteristic layers
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along I'°, respectively. The idea is to replace step by step the sharp layers by
more smooth layers. More precisely, let

. [{meVivlr-oro=0} if Chzezh
" Yo, e Vyi0,lr- = 0} if > ¢
Then the asymptotically fitted streamline diffusion FEM (ASDFEM):
Find d,€e ¥y such that
as(ty,v) = (fio,+8bVv,)  Vy,ely,

is an approximation of the solution # of (*) with

e Li=f in©
—ut fChmesh  with utl.e=0 25| —0
(*) b, U=1u 1 = £ 2 w1 U |p-gro =40, on - =
ou®
d=u ifh>e with ¥°|,- =0, — = 0.
- 5?1 r+oro

A global error estimate is given by

THEOREM 4. Let ¢c—4divb = oy, > 0 and e6 < Ch®. Furthermore assume
that

lu=u*lloo < C/e,  Iutlaz < Ce™,
lu—uflo 2 < Ce', |05, < Ce 12,
and that u,e W"2(Q), where u, is the solution of
Louy =b-Vug+cuy =1, uylp =0 with r 2 1.
With » = 3/2, we have for ASDFEM the estimate
lu—ullo.2.0 < Crin{e'/2 + h¥2e7 34, gt p3i2g= 12, Gl 4 pFm1i2 4 pp=2)
F=min{r;k+1}.
For e—0 (more precisely, if ¢ < h™*F*3/247=2) the higher-order estimate
lu—1,l., < ChmInET D=2

is valid.

The localization results of Theorem 3 remain valid for ASDFEM. Hence,
ASDFEM results in improved convergence properties in the boundary layers at
r+oure. This theoretical superiority of ASDFEM to SDFEM is reflected by
numerical calculations ([6]).

A survey on asymptotically fitted Galerkin and streamline diffusion
methods is given in [7].
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5. Streamline diffusion FEM
with discontinuity-capturing

Despite the success of SDFEM, it does not exclude overshcoting and
undershooting (sometimes even restricted oscillations) about sharp layers.
Although ASDFEM reduces such instabilities in boundary layers, this is not
the case for interior layers (“shocks™).

Linear and monotonicity-preserving methods (cf. Sect. 2) which are
a candidate to preclude interior oscillations are at most first-order accurate and
overdiffusive. Mizukami and Hughes [8] proposed a nonlinear method
satisfying the maximum principle and based on triangles and piecewise linear
elements. Unfortunately, extensions to higher-order-element methods are not
apparent.

Recently, Hughes et al. [2] developed an extension of the SDFEM
including a discontinuity-capturing term. Leb b, denote the projection of
b onto Vu,, that is

(b'Vuh)
b” = [Vuhlz
0

Vu, if Vu, #0

if Vu,=0.

b

Note that b-Vu, = b-Vu,.
With test functions of the form

ﬁh = Dh+51 b'VUh+52b|| ) Vvh
the proposed method reads:
a5ty vp) = @y, 0) + 3 (Letty, 01 bV, +8,0-V)r

TE.‘fh
= (fiv,+6,b-Vv,+06,b-Vv,).

The additional term engenders control on gradients in the direction Vu,
and increases the robustness of SDFEM, as it is known from numerical
experiments ([8], [5]). A rigorous mathematical analysis of the method is in
general an open problem. A first step toward this problem is paper [5]
concerning e.g. Cauchy’s problem for Burger’s equation in one space dimen-
sion. The authors proposed the shock capturing modification to allow a real
break through in the practical use of streamline methods for compressible flow.
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