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Introduction

The purpose of this note is to make more explicit, at least for specific fields,
some of the results in the paper [3] of Buchweitz—Eisenbud-Herzog. There
a functor F is defined from the category .# of Z/2Z-graded modules over the
Clifford algebra C of a quadratic form f to the category .# of linear maximal
Cohen—Macaulay modules (MCM-modules) over the hypersurface ring R de-
fined by the quadratic form f, and it is shown that this functor establishes an
equivalence of categories. Using this result, it is shown in [3] that there are at
most two nonisomorphic indecomposable, linear MCM-modules over R which
are syzygy modules of each other, and that their rank is determined in terms of
invariants of the quadratic form f. In Section 1 of this paper we briefly recall
these results.

The main object of this paper is to give an explicit description of the
R-representation of the unique indecomposable linear MCM-modules M and
Q' (M) over R. Thus, if 4, =k[X,,...,X,] and R=A,/f, we want to
determine the matrix of linear forms o« such that

05 ATS AT > M - 0.

The description will be given inductively in the following sense: Suppose
M is an indecomposable linear MCM-module over k[X,, ..., X,]/f, and N is
an indecomposable linear MCM-module over k[Y,,..., Y, ]/g. Set
A=k[(X,,....,X,, Y,,..., Y], then f+g is an clement of A, and the syzygy
modules ;. ,(M® (N), are linear MCM-modules over A/f+g. '

Let W and Q'(W) be the indecomposable linear MCM-modules over
A/f+g. If rank W =rank @}, ,(M ® (N), (which can easily be examined
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using 1.3) then, since there are at most two indecomposable linear
MCM-modules over R (see [3], Prop. 3.1), W must be isomorphic, up to a shift
in the grading, to Q,,.,(M® ,N) for some ie {1, 2}. It is then easy to derive
the presentation of QY ,,,(M® ,N) from the presentations of M and N.

Let F: .# - % be the functor establishing the equivalence between the
category of Clifford modules and the category of linear MCM-modules. It is
shown in Theorem 2.2 that

(1) F(M®N)= Q4r+4(F(M)® ,F(N)(+2),

where ® denotes the twisted tensor product of the Clifford modules M and
N as defined in § 2, and where (+2) denotes a shift in the grading by + 2. The
details can be found in Section 2.

In the last section we study, motivated by (1), the twisted tensor products
of Clifford modules in detail for finite fields of characteristic # 2, p-adic fields
with p # 2, and the real numbers. (Other fields for which the classification of
the quadratic forms is well understood can be treated similarly.) For all the
fields considered we show that there is a finite set of indecomposable Clifford
modules such that any other indecomposable Clifford module is a tensor
product of these. More precisely, if k is any of the above fields, then there exist
nondegenerate quadratic forms f, ..., f, over k with the following property:
Let C, be the Clifford algebra of f;, and let M, be the indecomposable Clifford
module over C; (which is unique up to isomorphisms and shifts). Then, if there
is given an arbitrary nondegenerate quadratic form f over k with Clifford
algebra C and Clifford module M, there exist integers n,eN, and an
isomorphism ¢: & C¥ — C of Z/2Z-graded k-algebras such that

) M= @M,

where M is the module M considered as &® CPF-module via .

Formula (2) can be made very explicit for all the considered fields, see
Propositions 3.3-3.5. As a consequence we obtain recursion formulas for the
presentations of the linear MCM-modules in terms of a finite set of such
presentations.

The case of finite fields (including characteristic 2) has been worked out by
my student Jutta Lachfeld as part of her Diplomarbeit.

1. Review on maximal Cohen-Macaulay modules on quadrics

In this section we recall some of the results of [3] which are needed in later
sections.

Let A =k[X,, ..., X,] be a polynomial ring over the field k, and let fe A
be a quadratic form. A graded module M over the hypersurface ring R = A4/fis
an MCM-module if and only if it has a homogeneous free A-resolution

0—F S3F,-M-0
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M is called a linear MCM-module (or an Ulrich module) if o is a degree 1 map,
which is the case if and only if u(M) = e(M), see [2]. Here u(M) denotes the
minimal number of generators, and ¢(M) the multiplicity of M.

We denote by ¥ the full subcategory of the category of all graded
R-modules, which consists of the linear MCM-modules whose generators are
all of degree 0

Now let C: = C(f) be the Clifford algebra of f. C is a Z/2Z-graded
algebra, C = C,@® C,. We denote by .# the category of Z/2Z-graded modules
M=M,®M, with dim; M < oo, and by .#, the category of C,-modules of
finite k-dimension. We call the objects in .# Clifford modules for j.
A Z/2Z-graded k-vector space M will be simply called a Clifford module over
k if it is a Clifford module for some quadratic form f over k.

THeorem 1.1 ([3], Th. 2.1). The categories &, # and # , are all equivalent.

A similar result holds for hypersurface rings defined by forms of higher
degree, see [1], Theorem 3.9.

We briefly describe the functors which establish the equivalence of these
categories: The equivalence of .#, and .# is given by the so-called Atiy-
ah-Bott-Shapiro equivalence G: .#,— .#, where G(M)=C® M. (The
inverse of G is just the functor assigning to N = Ny@ N, e.# the module
Nqye#,.)

We now describe F: # — %. Let V = @}, ke, be an n-dimensional
vector space with basis (e,, ..., ¢,). We set X;: = ef for the dual elements of the
¢; in the dual vector space V*. We identify the polynomial ring 4 with the
symmetric algebra S (V*) of V*. The Clifford algebra of fis then just the tensor
algebra T (V) of ¥V modulo the two-sided ideal generated by the elements
x® x —f(x) for all xeV. Here we have set f(x): = f(x, ..., x,) for x =) xe,.

It is well-known that the natural inclusion ¥V — T(V) induces an inclusion
V' — C, whose image actually lies in C,. Therefore, if we are given a Clifford
module M = M, @ M,, the multiplication induces k-linear maps

VoM,—-M, and VOM,->M,

whose adjoints define degree 1 maps

(1) My@ASM,®A and M,@45M,®A4.
It turns out that (x, f) is a matrix factorization, that is,
2y fid=oaf=pa.

According to Eisenbud [4], this implies that cokera and cokerf are
MCM-modules over R, and

coker B = Qk(cokera)(+1),
coker a = Qk (coker f)(+1).
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It is clear that both modules are linear, and we set
(3) F(M): = cokera.

It follows that
(4) F(M(=1)) = Qr(F (M)).

We call f regular if R has only an isolated singularity. It is shown
in {3], Theorem 1.1 that C,(f) is semisimple if and only if f is regular. If
chark # 2 (which we mostly assume) then f is regular if and only if [ is
nondegenerate. The semisimplicity of C,(f) for a regular quadratic form f and
the equivalence of the categories .#, and .# is used in [3] (see proof of 3.1) to
prove

THEOREM 1.2. Up to isomorphisms and shifts in the grading there is a unique
indecomposable Clifford module for f.

As a consequence of 1.1 and 1.2 one concludes that there are at most two
indecomposable linear MCM-modules over R, and they are first syzygy
modules of each other. We denote this “unique” indecomposable Clifford
module of f by M(f).

In Proposition 3.2 of [3] the k-dimension of M (f) i1s calculated. Notice
that u(F(M (/) = 1/2-dim, M ().

We will reformulate 3.2 of [3] to make it more accessible for our purposes,
and assume from now on that chark # 2 and that f'is nondegenerate. We first
describe the invariants of a quadratic form which determine dim, M (f). They
are the rank, the discriminant and the Witt invariant of f.

If f=>3"",a,X}, a;ek* as we may assume, then rankf=n, and the
discriminant 8 (f) of fis the class of (= 1)"?!a, -a,-...-a, in k*/k*’. To describe
the Witt invariant we recall (see Scharlau [6], § 9, Thm. 2.10) that C(f) is
a central simple k-algebra if n is even, and C,(f) 1s a central simple k-algebra if
n is odd. The Witt invariant is then just the class of C(f) (resp. C,(f)) in the
Brauer group B (k) if n is even (resp. if n is odd). We denote the Witt invariant of
J by c(f), and set

&) inv (f): = (rank f, 3(f), c(f)).

There is a unique central division k-algebra D such that

c(f/)=(P] in Bk

dim, D is a square, and we set degc(f): = (dim, D)"/2,
If aeB(k) we denote by a* its image under the canonical map

B(k) - B(k(/3(f)). Thus, if a=[4], then a* = [A®,k(/5()].

Using these notations, we get
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ProrosiTioN 1.3. Let f be a quadratic form with inv(f) = (n, é, ¢), then
20t D2 dege, if n=1mod2,
dim, M (f) = < 2"*degc, if n=0mod2, and § =1,
2+ 202 degc*, if n=0mod2, and 6 # 1.
Proof. C,(f) is a central simple k-algebra if n is odd, and if n is even then
Co(f) = A ®,‘k(\/’5), where A is a central simple k-algebra (see proof of 2.10

in [6]).
In the proof of 3.2 in [3] it is shown that

20 D2 deg [Cy ()], if n=1mod?2,
dim, M (f) = < 2"2deg[A], if n=0mod2, and 6 =1,
2+ 2V dep [ A ®kk\/5)], if n=0mod2, andd # 1.

Here [B] denotes the class of an algebra in B (k) (respectively in B(k (\/5))).

If n=1mod2, then c(f) =[C,(f)], by definition. Let a = [A], so that
a*=[4 ®kk(\/5)]. It remains to be shown that c = a if 6 = 1, and ¢* = a* if
o # 1.

Now C(f) 2 A®(—1)""'a,-a, ... a,_,, a,), where m = n/2 (see proof
of 2.10 in [6]). Here (c, d) denotes a quaternion algebra. Its class in B (k) will be
again denoted by (c, d).

Using the fact that (¢, d) = (—cd, d) in B (k) the above isomorphism yields
c(fy=a{(—"a,"... a, a,) in B(k), and c¢(f)* =a*-(—1)"a,"... a,, a,)*
in B(k./9).

Now if 6 =1, then (—1)"a,"...-a,€k*’, and thus ((—)"a,"...-a,, a,)

n» n

=1. On the other hand, ((—1)"a,'..."a,, a,)* =1, always, since

(—1)"ay-...-a,ek(/O)*".

2. Tensor products of Clifford modules

Let A=k[X,,..., X,] be a polynomial ring over a field, and let fe 4 be
a quadratic form. As in Section 1 we consider A as the symmetric algebra
S(V*) of the dual of the vector space V = @7_, ke;, where X, ..., X, is the
dual basis of e,, ..., e,.

Given a second quadratic form geB=k[X,,..., X, ] =S(W*), we
define the (direct) sum f+g¢g of f and g, as the sum of f®1 and 1®g¢g con-
sidered as elements in A®,Bx~k[X,,...,X,, Y;,..., Y, ], so that f+g
=f(X,,...., X, )+g(Y,, ..., Y,).

We will identify the Clifford algebra of f+g with the graded tensor
product C(f)® C (g) of the Clifford algebras C(f) and C(g) which is defined to
be the graded tensor product of the underlying graded vector spaces, and
whose multiplication is given by

(1) @®b)- (c@d) = (= )P4 c@b-d.

9 — Banach Center t. 26, ¢z, 2
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Now V@ W can be naturally embedded into C(f)® C(g) by the map
jx+y)=x®1+1®y for all xeV and all ye W, and then C(fY®C(g) is
generated over k by the image of j. Using the universal properties of graded
tensor products and of Clifford algebras one finds a natural isomorphism

2) a: C(f)®C(g) — C(f+g)

with ¢(x@1+1®y) = x+y.

Similarly one defines the graded tensor product of Clifford modules: If
M = M,® M, is a Clifford module for f; N = N,® N, a Clifford module for g,
then one defines the graded tensor product M ® N as a Clifford module over
C(f)®C(g) by setting

3) (M®N)O=MO®kNO®M1®kN1
and
(M®N)1 =M, N, &M, @ N,.
The operation of C(f)®C(g) on M@ N is defined by
(@a®b)- (M@ n) = (—1)4esd@eem 5. Qb n.

Using the natural isomorphism (2), we will consider henceforth M ® N as
a C(f+g)-module.

For the rest of this section we will only consider fields of char k # 2, and
all our quadratic forms will be assumed to be nondegenerate.

Given such a quadratic form f, there is, by 1.2, up to shifts and
isomorphisms a unique indecomposable Clifford module which we represent
by a module denoted by M(f). We also introduce the notation M = N to
indicate that M and N are Clifford modules which are isomorphic up to shifts.
The question arises when

M(I®M(g) = M(f+9g)?

This question has a simple answer: It follows from the formulas (1) that
dim, M (f) is a power of 2, since the element c¢(f) can be represented in the
Brauer group as a product of quaternion algebras. Therefore we set
4) I(f) = log, dim, M (f).

As a trivial consequence of 1.2 we now get

ProProsITION 2.1. Let f, g be quadratic forms. The following conditions are
equivalent:

@ M(NHO®M(g)~ M(f+g),
(b) 1N)+ig)=1(f+9)

We now explain the connection with linear MCM-modules: As in the
proof of 1.1 we denote by F the functor from the category .# of Clifford
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modules to the category % of linear MCM-modules. Now let 4, =S§(V*),
A,=S(W*)and A = A, ®A,, and let fe A, and ge A, be quadratic forms.

THEOREM 2.2. Let M be a Clifford module for f, N a Clifford module for g,
then

F(MNY= Q%1 o(F(M)® (F (N)) (+2).

(The shift by 2 in this formula is needed since F (M ® N) has all its generators in
degree 0, while the second syzygy-module of F(M)® ,F(N) has all its
generators in degree 2.)

The proof of this theorem will follow from the next lemma which is an
immediate consequence of the definitions (1), (2) in Section 1, and (3) of
Section 2.

LEMMA 2.3. Let (x, B) be the matrix factorization of [ associated with the
Clifford module M, and let (y, 8) be the matrix factorization of g associated with
the Clifford module N. Then (n, 6) is the matrix factorization of f+g associated
with M® N, where

_ (idMom@% °‘®id~om)
,B®idN1®A’ _idM1®A®5
and
(idMo®A®5’ a®idN1®A)
= . ) .
P®idy,p —Mdy,4®7
In terms of matrix factorizations this lemma says that, whenever the
conditions of 2.1 are satisfied, and («, f) (resp. (v, d)) is the matrix factorization

of minimal size for f (resp. for g), then (n, o), as defined in the Lemma, is the
minimal matrix factorization for f+g.

Proof of 2.2. We use the notations of 2.3. According to § 1, (1), (2), and (3)
the modules F(M) and F(N) have the presentations
05 M,®,S(V¥)>M,®,5(V*) = F(M)->0
and
0 Ny®,S(W*) > N, ®,S(W*)— F(N)—-0.

We may consider F(M) and F(N) via the canonical epimorphisms
A=8S(V*)®,S(W*)>S(V*) and 4 - S(W*) as A-modules. The tensor pro-
duct F(M)® , F(N) has then the following free A-resolution

0-F,3F, 3F,»FM)® ,F(N)-0
with
_ (a ®idy, g4

Q= . and ¢, = (dp,g.®7, a®idy g ,)
1 _ldM|®A®y) 2 Mo®4 No®A
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Since f+g lies in the annihilator of F (M)® ,F (N) one obtains, according to
Eisenbud [4], the 4/f+g-resolution of F(M)® F (N) as the associated total
complex of the following double complex

(5) 0-F,A8F, ® ABF,A-0
¥21 ¥1 T
..—>F1®Z3>FO®A

T
... > Fo® A.

Here A = A/f+g. ¢, = ¢,® A4, and ¥, = y, ® A with maps yr,: F,— F,
and V,. F,—>F, such that ¢, 0y, =y,0¢, =(f+g)-id;, and ¢,0V,
=¢,00, = (f+g)'idh'

It is clear that we can choose

. . idpy, 04 ®5
= (B®idy, g4 —idy,e.®5) and =( Mo®4 )
lpl (ﬂ N1®A Mi®A ) IJIZ ﬁ@lch.@A

Now Q% 4, (FIM)® F(N)) = Im (22), and it follows from the complex (5)
1

that this module shifted by 2 has the A-free presentation

056G, >Go— Q% ,+,(FIM®,F(N)(2) -0
with

idy. 04 ® 0, t®idy,
0'=(|//1, (Pl):( Mo® A Ni®A )

B®idNo®A’ —'idM1®A®y
Now 2.3 and formulas (3) and (4) of § 1 imply the assertion.

3. Generating sets of Clifford modules

Suppose fand g are equivalent quadratic forms; then their Clifford algebras are
isomorphic. Let ¢: C(f) - C(g) be such an isomorphism, and let M (f)
(respectively M (g)) be the indecomposable Clifford modules of f(respectively of
g). Then by the uniqueness of these modules we have M (f) @ M (g), where in
this section we use the symbol “=” to indicate that there is an isomorphism ¢:
C(f)— C(g) such that the modules M () and ,M (g) (which is M (g) considered
as a C{f)module via ¢) are isomorphic up to a shift in the grading. We
therefore may talk about the Clifford module of the equivalence class of
a quadratic form f.

We say that a fizld k has the property C if the quadratic forms over k are
classified by the rank, the discrimimant and the Witt invariant. Such fields are
for instance the p-adic fields, the finite fields and the nonreal algebraic number
fields. A general characterization of such fields is given in Theorem 14.5 in [6].
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Now suppose that k is a field with the property C. If f'is a quadratic form
over k with inv(f) = (n, é, c) (see § 1, (5)), then we write M (n, 4, ¢) for M (f),
since M (f) depends only on inv(f).

Wecallaset & = {M, ..., M,} of indecomposable Clifford modules over
k a generating set of Clifford modules for k if for any other indecomposable
Clifford module M over k there exist integers m; such that

MaxMMIMTR...QM™,

For certain fields with the property C we want to describe such generating
sets. To demonstrate the method we consider a trivial example: Assume k is
algebraically closed, then the rank determines the equivalence class of
a quadratic form, and thus for each ne N we have an indecomposable Clifford
module M (n) belonging to the class of quadratic forms of rank n. It follows

from 1.3 that
2+ D2 Gy = | mod?2
dim, M (n) = ’ ,
im, M (n) {2..12, if n=0mod?2.

Applying 2.1 we find that

®"2 M (2), if n=0mod?2.
RPIM@OM(1), if n=1mod2,

Notice that M(2) and M(1)®M (1) are not isomorphic, since
dim, M (2) = 2, while dim, M (1) ® M (1) = 4. Thus we see-that in this simple

case {M (1), M(2)} is a generating set of the Clifford modules over k.
The above formulas imply that

Mn+2)xM(n@®M(2) forall n>1.

Mmz{

In terms of matrix factorizations this isomorphism says that if (a, ) is the
indecomposable matrix factorization of f, then

[ ]l

is the indecomposable matrix factorization of f+ XY, which is Knorrer’s
periodicity theorem [5] in the graded case.

We now assume that k is a field of characteristic # 2. The subset S (k) of
elements (n, 8, ¢)e N x k*/k** x B(k) for which there exists a quadratic form
with these invariants. It is clear that S(k) = | ),», S, (k), where S, (k) is the set of
elements of S(k) whose first component is n. Let s,€S,(k), s,€8,,(k), and
choose quadratic forms f and g such that s, = inv(f) and s, = inv(g). We
define the product s,-s,€8,,,(k) by setting 5, s, = inv(f+g).

This definition does not depend on the choice of f and g, and thus S (k),
together with this multiplication, is a graded, associative semigroup. The
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multiplication can be made explicit without referring to quadratic forms. The
result is compiled in the next

LemMa 3.1 ([6], page 81).

[(n+n, 88, cc'(8,8), n=0mod2 and n' =0mod?2,
(n+n', 88, cc’ (8, —&)), n=0mod2 and n' = I mod?2,
(n+n, 88, cc’(—6,9)), n=1mod2 and n' =0mod?2,
(n+n', 60, cc’(6,8)), n=1mod2 and n' = lmod?2,

(n, 0, c)y(n', &, c') =

(Here and in the whole section we denote the class of a quaternion algebra
(a, b) in B(k) again by (a, b).)

The hyperbolic form X7 — X3 has the invariants (2, 1, 1). Thus (2, 1, 1)
always belongs to S(k). We let (2, 1, 1)S(k) be the “ideal” {(2, 1, 1)
(n, 8, ¢)|(n, &, c)e S(k)}. There is the following simple general result.

ProprosiTiION 3.2. If k has the property C then
M2, 1, )} u{M(@né c)in d c)eSENQ2, 1, 1)S(k)}
is a generating set of Clifford modules.

Proof. By 3.1 we have (2, 1, 1) (n, 4, ¢) = (n+2, é, c) for all (n, 4, c)e S (k).
Similarly as in § 2, (5) we set

(1) I(n, 8, ¢) = log, dim, M (n, ¢, ¢)

Now 1.3 implies that /(2, 1, 1) =1, and that I(n+2, 8, ¢c)=1+1(n, 9, ¢
=12,1, )+I(n,8,c), so that by 21: MMn+2,6,0)xMQ2,1, H®
M(n,d,c). Since any (n,d,c)eS(k) can be written as (n,é,¢)=
2,1, 1y (n, &, c) with (n, 6, c)é¢(2,1,1)Sk) we get M, b, ¢~
®'M(2 1, DOM (v, &, ¢), as required.

We now consider more specific fields.

1. Finite fields

Let k= F, be the Galois field with g = p™ elements, where p is a
prime number ;é 2, and where m > 1. In the followmg the distinction — 1 e k*’
or —1¢k** will be necessary. Notice that —1ek** if m > 1 or p= 1 mod4,
and —1¢k*"if p=3mod4 (and m = 1). In any case k*/k*’ is a group of order
two. We denote its generator by u, which may be chosen to be —1 if
p = 3mod4.

By the theorem of Wedderburn we have B(k) = {1}, and as k has property
C, rank and discriminant alone classify the quadratic forms. Thus we simply
write (n, é) instead of (n, 4, ¢). (This should not be confused with the symbol
{a, b) for quaternion algebras. It should be clear from the context what is
meant.)
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PrOPOSITION 3.3. Assume k is a finite field of characteristic # 2 Then

(@) {M(1, 1), M(1, u), M(2, 1)} is a generating set for the Clifford modules.
(b)

Min, )~ ®"2 M (2, 1), if n=0mod?2,
TI@MAMQ, H®M(, 1), if n=1mod?2,
and
M, u= ®Hn_1)/2]M(2’ H®M(, Y®M(1, —u), if n=0mod2,
TEETIRWAME2, DOM (1, —1), if n=1mod?2.

Notice that
(MU, w, if —lek*,
M1, _“’”{M(l, 1), if —1¢k*
and
M(,1), if —1ek*,

M, —l)z{M(l,u), i — gk,

Proof of 33. (a) (1, 1} (1, weS, (k), and (1, ) (n, &) = (n+1, (—1)"85).
Since (—1)"68’ =1 or umodk** for suitable 6, &, it follows that S, (k)
generates the semigroup §(k). Therefore S(k)/(2, 1)S(k) = S, (k), and thus (a)
follows from 3.2. '

(b) We have seen in the proof of 3.2 that M(n+2, ) = M(2, D&® M (n, J).
Thus if n=0mod2, one proves by induction that M(n, )=
@U-VI2IM (2, 1)@ M (2, 6). Since I(1,8) =1 for 6 =1, u, and 12, u) =2,
and since (2, u)=(1, 1)(1, —u), it follows from 2.1 that M2, u) =
‘M1, )®M (1, —u). Thus we have proved (b) in the case that n = Omod 2.
The case n = 1mod?2 is treated similarly.

The following example demonstrates how one uses 3.3 to find explicitly
the indecomposable matrix factorization of a quadratic form. Let k be a finite
field with —1¢k**. We want to factorize

f=X1+Xi+Xi+Xi+ X3

Since 6 = 1, 2.8 implies that M(f)=* M2, DM (2, H)®M(1, 1). To
write down the factorization we first have to pass to the equivalent form

g=YlY2+Y3Y4+Y52.

Using 2.3, the factorizations corresponding to the modules in terms of the
Y, are given as follows:

M2, 1): (), (V)
M2, DOMQ2, 1):

(% %] [Y% ¥
@ ﬁ"[[}’:, —YJ’ [Yz’ —Ya]]’
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[[ | } |: | ]:'
ﬁ, — ls ’ ﬁ, — is :

Y,, O Y,, Y |2
0, Y, Y, -Y,
Y,, Y,-Y, O
Y,, =Y, 0, —Y,

Thus

(Y, ,+Y, Y, +YJ)E, =

To get the factorization of f itself we have to express the Y, in the matrix
factorization by the X,. Since k is finite there exist a, bek such that
—1=a%+b? and we can express the Y, as follows:

Y, =2(X,—-bX,+aX,),

Y, =X +X,+bX,,
Y,=X,+(@a-b)X,+(a+b)X,—X,,
Y,=X,+(@a-b)X,+(a+b)X;—X, and Y,=X,.

2. p-adic fields

As a second example we consider the p-adic fields k = Q,, where p is
a prime number # 2. For general properties of this field we refer to Scharlau
[6], Serre [7], and Vigneras [8]. We shall need the following facts:

(1) k*/k** = {1, u, p, up}mod k**, where ueZ, such that umodp is
a nonsquare in F,. If p=1mod4, one may choose u = —1.

(2) There is a unique quaternion algebra Q over k which splits for every
quadratic extension of k. The class [Q] of Q in B(k) generates a subgroup of
order 2 which we identify with {+1}. Hence we may write

@. b) = 1, if (a, b) splits,
»7 T =1, if (a, b) is a division algebra.

(1)

One gets the following table

2) (a,b) | 1 u p up
11 | 1 1

u|l I -1 -1

pll —1 E —¢

up| 1 —1 —¢ &

where the entries are (a, b), and where

L i —Tek,
=1, if —1¢k*.

(3) Rank, discriminant and Witt invariant classify the quadratic forms
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over k. If (n, 4, ¢) are the invariants of a quadratic form over ., then with the
identifications in (2) we have ¢ = +1.

LemMMmA 3.4: The number l(n, d, ¢) = log,dim, M (n, 8, ¢} is given by

(n—c)2+1, if n=1mod?2,
I(n,d,c)=<(n+1—¢)/2, fn=0mod2 and 6 =1,
(n+2)2, if n=0mod?2 and 6 # 1.
Proof. We apply the formulas 1.3 to our situation. Identifying ¢ with +1 as
we did above we get
1, fc=1
degc = { , ifec=1,

2, ife=—1.
Using that ¢* =1 (by (2) above) the assertions follow immediately from 1.3.

ProposiTioN 3.5. Let p # 2 be a prime number and let k = Q,.
(@) IM(2,1,1), M@, 1, —=}u{M(Q,3, 1)|de{l, u, p, up} mod k**} s
a generating set of Clifford modules.
(b)Y For all (n, d, c)e S(k) we have
Mn, 8,00~ M, 5, )& (@M (2, 1, 1))
for a suitable m, where (n', &', ¢)eS(k)\(2, 1, 1)S (k).
()  SKNE L 1Sk
=S5, (uUS, (k) U3, 8 —1)|sek*/k*} ui@4, 1, —1)},
and
Sy (k) = {(1, &, D] dek*/k*’},
S,(0) = {(2, 8, 15ek¥/k*, c = £1\{2, 1, D},

(d) The modules in the set S(k)\(2, 1. 1) S(k) are expressed by the generating
Clifford modules as follows:

M2, 6, D)xM(, 1, )M, =4, 1) for all sek*/k*".
MO, p, )®M(1,up, 1), if —1ek*’,
M(lv pD- 1)®M(l’ P 1)5 ’f ’—]¢k*2,
M, u, DOM(1,up, 1), if —1ek*,
M1, u, )M, p, 1), if —1¢k*,
ML, u DOM,p, 1), if —1ek* .
M, u, DOMQ, up, 1), if —1¢k*,

M(2,u,—1)z{
M2, p, —1):{

MQ@,up, —2)= {

and

M3, L, ~DaM(1,u DOMQ2, u, 1),
M3, u, —xa M1, 1, D&M(2,u, —1),
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M(la 1’ 1)®M(2s P, _1)5 l:f—lEk*z,
M@, 1, DH®MQ2,p, 1), if —1¢k**,

M, 1, DOM 2, up, —1), if —lek*’,
M1, 1, D®MQ, up, 1), if —1¢k*,

Sketch of the proof. The proof is similar to the one of 3.3, therefore we only
give an outline of the proof. In the first step one verifies that the semigroup S (k)
is generated by S, (k). For the proof of this fact one uses Lemma 3.1 and table
2 for the quaternton algebras. Moreover it is needed that (2, 1, —1)¢ S, (k), see
Serre [7], 1V, § 3, Proposition 6. As a side result of the calculations in the proof
of this [irst step one obtains assertion (c) of the Proposition. The statement (b)
follows from the proof of 3.2.

To prove (a) and (d) notice that

M@, 8, @M@, &, ¢)x M(n", 3", )

if and omnly if (n,d,¢) (0,8, ¢)=n" 40", ¢c"), and I(n, b, c)+1(n, &, )
= l(n", 6", ¢"), where | is defined as in 3.4. Using 3.2, 3.4 and table 2 one checks
(a) and (d) after some calculations.

To give an idea of the sort of calculations which are needed in the
proof of (a) we show that M (4, I, —1) cannot be omitted in the list of the
generating modules. (4, 1, —1) can be decomposed in S(k) in the following
ways:

4,1, -1)=(2,0,1)2,0, —1),#1 and 4,1, —1)=(1, 6, 1)(3, —6, —1).

According to 3.4 we have [(4,1, —1)=3, and (2, J, +1) =2, so that
(4,1, —1)#12,06, )+1(2,0, —1), and thus M@, 1, —1) and M(2, 46, 1)
@ M (2, 6, —1) are not isomorphic. Similarly M (4, 1, —1) cannot be isomor-
phic to M (1, 6, @M (3, —48, —1), since I(3, =8, —1) = 3.

M(3,P7_l)z{

M (3, up, —l)z{

3. The real numbers

As a last example we consider the real quadratic forms. Any quadratic
form f over R is equivalent to a form ) [-, X?—Y 7%, X?. The pair (r, s) is
called the signature of f. The signature classifies the quadratic forms over R.
Notice however that inv(f) does not classify the real quadratic forms. For
example if f=Y{ X], then inv(f)=inv(—f)=(4,1, —1). However
signf = (4, 0), while sign(—f) = (0, 4). (Here, as for k = Q,, we may identify
c(f) with +1, since there is a unique nonsplit quaternion algebra, namely,
(—1, —1) over R)

More generally it 1s clear that if signf=(r,s), then inv(f)=
(1, & DIFS1(2, 1, 1)™¢"9), where

. 1, if r>s,
T l—-1, ifr<s.
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As there are n+ 1 pairs (r, s) with r+s = n, there are exactly n+ 1 nonequiva-
lent quadratic forms of rank », while inv(f)=(n, +1, +1) takes at most
4 values.

We thus denote the unique indecomposable module of a quadratic form
with signature (r, s) by M (r, s). Moreover, as dim, M (r, s) is a power of 2 we set
similarly as before I(r, s) = log, dim, M (r, s).

ProrosiTion 3.5. (a) I(r, 5) = i(s, r).

(b) For l{(r, 0) we have the following table:

r | 1]2]3]4]5(6]7]8
1,00 1] 2]3]3]4[a]4]4
(c) The Atiyah, Bott and Shapiro periodicity modulo 8:
M(r, s)QM(8,0)~ M(r+8, s),
M@, )@M(0, 8) ~ M(r, s+8).

(d) M(1, 0), M(0, 1), M(4, 0), M (0, 4), M (6, 0), M (0, 6), M (7, 0), M(0, 7),
M(8,0), M(O, 8) and M(1, 1) are the generating Clifford modules for R.

Sketch of the proof. To prove (a) let k be an arbitrary field of characteristic
#2, and let f be a quadratic form over k. For all xek* one has
dim, M (f) = dim, M (xf). In fact, suppose (a, ff) is the matrix factorization
belonging to M (f), then (xa, B) is a matrix factorization of xf. The correspon-
ding Clifford module N clearly satisfies dim, M (f) = dim, N > dim, M (xf). By
symmetry we get the other inequality as well. In our particular case, if
sign(f) = (r, s) then sign(—f) = (s, r), and so I(r, s) = (s, r).

The table (b) is computed using 3.1 and 3.4. For the proof of (c) let f be
a quadratic form with signature (r, s), and let f; = Yo, X?. Then f+f; has
signature (r+8, s), and we get

inv(f+fg) =inv(f)-inv(fg) =(n, 6, +1):(8, 1, 1) =(n+8, 6, +1).

Thus it follows that I(r, s5)+1(8, 0) = I(r, s)+4 = I(r+8, s), which proves
the first isomorphism. Similarly the second isomorphism follows. Finally, (d) is
a consequence of (a), (b) and (c).
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