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§ 1. Introduction

In this paper we use fixed point theorems together with linear controlla-
bility results to obtain global controllability results for nonlinear evolution
equations.

We consider a general nonlinear system

¢ =f(z,u,t), 2(0) =2

where the initial state 2z, and the state 2(¢) belong to a space Z and the
control term % (t) € U. We now set 2 = 2+2', 4 = %+ 4’ to make a local
approximation about (z, ) to obtain a system of the form

8 =AW +Btw + (@, u,t)+f(Z, 8, 1) — 2, 2'(0) =z,—Z(0).
Clearly if (z, %) is a solution of the original system this reduces to
2 = A) +BO)wW +f(z', u',t), 2(0) =0.

However, if this is not the case, the additional term, which is a known
quantity, sligtly modifies the analysis (see § 5, Remark 3). In this work
we will restrict our attention to the time-invariant case with the nonli-
nearity dependent only on the state variable. In Section 5 we describe
the modifications needed to extend the analysis to the more general
system.

[319]
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We will take Z to be a reflexive Banach space and assume that the
system has been linearized about (z, %), Z € Z, so that formally

(1.1) 2 = Az+Nz+Bu, z(0)=0.

B and A are linear operators and we assume A generates a strongly conti-
nuous semigroup S(¢) on Z. N is a nonlinear operator and the precise
conditions we impose will depend on the fixed point theorem that is used.
A mild solution of (1.1) is

4 1
(1.2) 2(t) = [8(t—8)Nz(s)ds+ [ 8(t—3)Bu(s)ds.

There are many different concepts of controllability for infinite-di-
mensional linear systems [3]. In this paper we will restrict our attention
to exact and approximate controllability. It is well known that requiring
that the linear system is exactly controllable to the whole Banach space
Z is very restrictive in the sense that it is impossible for most systems.
So we will examine the possibility of driving the nonlinear system from
the origin to a ball of radius r in a subspace V, where V is the subspace
to which the linear system can be controlled. Approximate controllability
requires that the system can be steered to a dense set in a ball of radius 7
in Z and we will examine this under the assumption that the linear system
is approximately controllable to Z.

Using the implicit function theorem it is easy to obtain local results.
The importance of our results is that we are able to obtain estimates for r
and 7. In order to do this we use a variety of fixed point theorems, namely
the contraction mapping theorem [6], Schauder fixed point theorem [5]
and a theorem due to Bohnenblust and Karlin [2].

§ 2. Linear results
We start with some definitions relevant to the linear control system
¢
(2.1) 2(t) = [ 8(t—s)Bu(s)ds = I,Bu.
0

Let us introduce the operator
G: LP[0,T; U]-Z,, 1<p< o
by
T
(2.2) Gu = f S(T —s)Bu(s)ds
¢
where U is also a reflexive Banach space.

DeriniTION 2.1. Exact controllability to a subspace V on [0, T].
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We say that (2.1) is evactly controllable to a subspace V if
Range(@G) = V.

DEFINTTION 2.2. Approximate controllability on [0, T]. We say that
(2.1) is approxvimately controllable if

Range (@) = Z.

In order to obtain criteria for the above controllability concepts we
have the following theorem:

THEOREM 2.3. (i) Range(G) = V if and only if, using @ norm on V
to be defined,

(2.3) |G*v*lzao,7; ve; = lIv*llyey,  1/g+1/p =1,
(ii) Range(@) = Z if and only if
ker (G*) = {0}
where
G*: V*—L[0, T; U*]
(G*v*) (1) = B*8*%(t)v".

In fact we can always put a Banach space topology on Range (&)
so that the system is exactly controllable to a subspace ¥V and will then
be approximately controllable to Z in the case V is dense in Z. To see
how we construct this topology, we note that ker @ is closed and thus

X = L*[0,T; U]/ker@
is & Banach space under the norm

I[ulllx = inf |ullLep,r oy = inf lu+ #lLep, 7 o)
us(u] Gum0

where [4] are the equivalence classes of w.
Now define G: X—Z by
Gu] =Gu, wuelul;
then @ is 1-1, and
16 [w]llz < 161 I[%]llx-
A norm on the Range (@) is now defined by
lelly = G vlx.

This norm is equivalent to the graph norm on D(G~!) = Range(@), G is
bounded and since D(é) is closed (all of X), @' is closed and so the above
norm makes Range(@) = V a Banach space.

21 — Banach Center t. 14
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Moreover,
IGully = IG~'Gully = 1G~'G[«]I
= |[w]ll = inf ] < [u«],
uelu)

80
GeZ[L[0,T; U], V).

Since L*[0, T'; U] is reflexive and ker@ is strongly closed and hence
weakly closed, the infimum in the definition of the norm on X is attained.
For any v € V, we can therefore choose a control % € LF[0,T; U] such
that

u =G n,

Accordingly, this control minimizes [[u|| s ;) OVer all controls which
steer the origin to V, and

(2.4) il e, ;07 = 10lly.

Indeed, if U is strictly convex this control is unique.

There are many ways to define the norms in ¥V which are isomorphi-
cally equivalent to the definition given by (2.4). One alternative is to
use the expression (2.3) to define |jv|,. Thus, in general, there exist posi-
tive constants a, § such that

alplly < 1@ vlix < Blolly.

In the case where p =2 and U is a Hilbert space the construction
of a topology on Range(@) is easier. In fact, the operator (GG*)~** is well
defined on Z and we set

V = Range(GG*)~""
and

lolly = GG~ vl;.
In fact, GG*: V*—>V is given by

T
GG*v* = [ 8(t)BB*S8*(t)v*dt.

Then for any v € V, the control u = G*(GG*)~'v steers the origin to »
and minimizes the control energy |lullp2p,r: v):

liier. 2. 07 = 6% (GG*) " vl 20,1 17 = <2, (GE*) 0Dy pe
= (GG*)" vl = |lv]i}.
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§ 3. Fixed point theorems

In this section we list a number of fixed point theorems which will be
used in the sequel.

THEOREM 3.1 [Contraction mapping theorem]. Let W be a Banach
space and @: W—W satisfy a local contraction

(3.1) lpw — g0l < klw—1ll, 0<k<1

for any w, w € D, a subset of W. Then the ilerative procedure

(3.2) Wi = PW;
converges to a unique solution in D of w = pw if the sphere
(3.3) 8 = e Ws ho—w < o Iy —ogl

and w, We tn D.

THEOREM 3.2 [Schauder fixed point theorem]. Every continuous operator
which maps a closed convexr subset of a Banach space into a precompact
subset has a fized point.

THEOREM 3.3 [Bohnenblust and Karlin theorem].
STRONG VERSION. Let 8 be a convex closed set in a Banach space W.
To each w € 8 associate a nonempty subsel ¢(w) < 8. If
(a) p(w) is convex for each w € 8,
(b) w,—w, PP, Py € p(w,) tmplies p € p(w),
(¢) | @(w) is contained in some sequentially compact set,
o8

then there is a point w, € 8 such that w, € ¢(w,).

WEAK VERSION. Let W be a Banach space with W* weakly separable
and 8 a convew weakly closed set in W. T'o each w € S associate a nonempty
subset p(w) = 8 such that

(a) p(w) 18 convex for each w € 8,

(b) 0, ™ w0, P> p, P, € p(w,) implies p € p(w),
(e} U ¢(w) is contained in some weakly sequentially compact set,

oeS

then there exists an w, € S such that wy € p(w,).

§ 4. Nonlinear controllability

We will employ two different methods of analysis. In the first, assuming
the state of the system is known, we will construet a control which drives
the origin to any point in a ball in V. When this control is played over
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the interval [0, T'] the state of the system is defined implicitly and we
will use fixed point Theorems 3.1, 3.2 to ensure a solution. The second
method does not construct a particular control but considers the totality
of controls which steer the system to the required end point. Thus multi-
valued maps are obtained and we use Theorerms 3.3 to obtain a fixed point.

4.1. Method 1. Let V be the subspace to which the linearized system
can be steered and consider

3 4
(4.1) 2(t) = f 8(t—s)Nz(s)ds+ [ 8(t—s)Bu(s)ds
0 0
or
(4.2) 2(t) = L,Nz+L,Bu.

We will impose conditions on N 8o that (4.1), (4.2) are well defined.
Since Range(G) — V, we can define the operator G' as in § 2. Now consi-
der the control

T
(43) w(s) =G [o— [ 8(T—p) Na(p)dp|(s)
0

= G~'[v —LpNz] (s)

which we will show steers the nonlinear system to v at T.
Substituting this control into the right-hand side of (4.2) we obtain
the operator

(4.4) (¢2) (1) = L, N2 +L,BG~'[p—L,Nz].
Moreover, .

(92) (T) = Ly N2+ Ly BG~'[v—L,Nz].
But LyB =G and so

(92) (T) = Ly Nz+GG'[v—L,Nz] = v.

So if we can impose conditions on the various operators to obtain
a fixed point for ¢, then for control (4.3), system (4.1) is well defined
with 2(T) = v. In the following we do not attempt to optimize the condi-
tions on the various operators and often make crude estimates. Qur inten-
tion is to illustrate the main ideas.

(a) Application of contraction mapping theorem

In this section we will apply Theorem 3.1 with W = L"[0, T'; Z] where
Z is a Banach space and r > 1, and the operator will be defined by (4.4).
For simplicity, we assume that wy, = 0 so that

wl = L‘Bé-lv.
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Most nonlinearities map Z into a larger space and we take account of
this in the following theorem (see [4]).

THEOREM 4.1. Let a nonlinear system be described by
2 = Az4+Nz+Bu, z(0)=0
and constder its mild solution
z(t) = L,Nz+-L,Bu.

Assume that .
(a) the nonlinear operator maps Z to a larger space Z such that

N: I'[0, T; Z]1-L*[0, T; Z]

18 conlinuous (where r, 8 > 1) and satisfies a Lipschitz-lype condilton
(4.5) 1Nz — N2\ oo, m; 27 < k(ll2ll, 121) Iz — 2|1
where the norms on the right-hand side are computed sn LT[0, T;Z). The
function k(-, :): Rt ¥ Rt —>R* <8 continuous, symmelric and %k(0, 0) = 0;

(b) the semigroup S(t) generated by A satisfies

S eLZ,Z)nLZ,V) for t>0,

(4.6) I8()zliz < g®)lellz,  N@lzae,m = ¢,
(4.7) IS@#)2lly < g lellz,  Nglzep,m = @

where ¢ and d are constanis dependent on T and where g, w are positive real
numbers defined by

1/r =1)g+1/8-1, 1/s4+1ljw =1
and

(4.8) || f 8(-— 8)Bu(s)ds

vrio,1;21) S B Wlzop,r vy

where R <s a constant dependent on T;
(c) a i chosen 8o that the condition
(4.9) (Rd+¢) sup k(6,,6,) =K<1
0<01,82<a
13 salisfied.
Then the state of the system described by (4.2) can be steered from the
origin lo any final state, v, satisfying

1-K

(4.10) Iolly < a

in the tme interval [0, T].
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Proof. Let the set D of Theorem 3.1 be the ball of radius e in L'[0, T'; Z];
then

< Nl oo, V2 — N 2l oo, 1.2 + B1G ™ Ly (N2 — N 2)lx
< 17l zago, 77 1V2 — N 2| o0, 7; 7, +R 19| Lopo, 7 N2 — N 2| ogo, 7 2
< (RIglzop,r+ 171 zago, ) E (el rpo, . 29, ||5||Lf[o,1';§])'

lpz — @ zllL’[o.T;gl

X — 2|l L0, T; Z)

by (4.7). So ¢ is a contraction on D by (4.8).
Now the sphere S (3.3) is

- k _
|2 _L(')BG—lv”L'[o,T;g] < ]__—? IIL(.)BG_’UH
and § will certainly lie in D if

(1 + TZG')ILL(')B@_I”“L’W-“EI < a.
This will be the case if
ﬁ Riviy < a
or
a(l—F)

vl < R

which is guaranteed by (4.10). Thus by Theorem 3.1 there is a unique
fixed point of ¢ in a ball of radius a contained in L'[0, T'; Z], whenever v
" satisfies (4.10). Hence we obtain exact controllability of system (4.2)
from the origin to such a final state » in the interval [0, T].

Remarks. 1. The novelty in the above formulation is the condition
(4.5) which allows for a large class of nonlinear operators to be considered.

2. The ball in V determined by (4.10) depends on the constants
¢, d, R which are all dependent on the time 7I. Hence the size of the ball
will vary for different intervals [0, T].

3. If we assume
(a) Sty eL(Z,Z), t>0
ISz < g0)lzlz, §eLZP[0,T], b= w;
(b) LwBueC[0,T;Z] VuelLr[0,T; U],
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then the unique fixed point solution also lies in C[0, T; Z2]. Particularly
important are the cases Z =2, Z = V.

(b) Application of Schauder fized point theorem

In this section we consider the Banach space C[0, T'; Z] and let § be the
closed convex set

(4.11) I2lleo, 720 < @
THEORBEM 4.2, Let a nonlinear system be described by
2 = Az+4+Nz+Bu, 2(0)=0
and consider its meld solution
z2(t) = L,Nz+L;Bu.
Assume that |
(a) the nonlinear operator maps Z to a larger space Z such that

N: C[0,T;Z]-L*[0,T;Z], s8=>1
ts conttnuous and salisfies
(4.12) N2 oo, 771 < e(llel) ll2]

where the norms on the righi-hand side are computed in C[0,T; Z] The
Sfunction o(:): R*—R* is continuous and o(0)—0 as 6—0;

(b) the semigroup S(t) generated by A satisfies
St eLZ,Z)nL(Z,V) for t>0,
(4.13) 18()zllz < g(*) lizllz)  [9log,m = ¢,
(4.14) IS 2lly <Gt l2lz,  [19lzopm = d

where ¢ and d are constants dependent on T and where w i8 a posilive real
number defined by

1/s+lw =1,

and .
(4.15) I f 8(-—8) Bu(3)85) 7, 1 < B ltlogo,z; 11
0

where B {8 a constant dependent on T';
(c) the following compactness conditions are satisfied:

the operator L,B: L*[0,t; Ul—>Z is compact for each te[0,T],
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and
the operator L,N: C[0,t; Z]>Z 18 compact for each te[0,T];
(d) a <8 chosen so that the condition
(4.16) (Rd+c)supo(f) = K <1

0<a

t8 satesfied.
Then the state of the system described by (4.2) can be steered from the
ortgin to any final stale, v, satisfying

1-K

{4.17) lolly < a

tn the time snterval [0, T'].
Proof. Since

(g2) (t) = L, N2+L,BG ' [v—LpNz)]
we have

|71l ogo, 7 |1 N 2l Log0, 2 21 + B i)l + B | Lp N2l

lpzlicre,r; 2 < |
< (1§, y + B ||E"L°[o,r]) gup 2(0)a+Rpjy
<a

<kata(l—k)<a

by (4.14) and (4.15). S8o ¢ maps 8 into S.
In order to prove ¢ is continuous we compute

lp(z+h)—¢ (z)“c[o,r;z] < (lg "L'[D,T] +B "5 "L'[o.r]) \N(z+h)—N. z“L'[o,T;i]

and so by assumption (b) ¢ is continuous.

Finally we have to show that ¢ maps § into a preeompact subset of S.
In order to do this we use condition (c) together with the Arzela—Ascoli
theorem. Let us consider the operator L,N: C[0,?; Z]—~Z. Now

to
VLo Nz —Ly Nallg < || (S(t—1o) —1) [ 8(ts—5) Na(s)ds|,, +

+]| f S(t—s)Nz(s)ds”z.
to

< S —t)—1) L,DNz” + 1§ Lopeg, IN2lLoey 2

But the map (¢, 2)—>8(t)z is continuous and hence uniformly continuous
on [0, T] x 2 for some compact set L2 in Z. Moreover, L, Nz is a precom-
pact set for |2]lo,1;2) < @, 80 that

|[(8(t—1t) —I) L, N2||>0 as |2,
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uniformly on |izllgy,r;z) < @. Also ||fllzey, —0 a8 t|{t,. Hence L, Nz is equi-
continuous from the right on |I2llgy,r; 2 < a.
To show equicontinuity from the left we take ¢ > ¢> h > 0; then

i—s
||L,Nz—L,_,,Nznz<|| [ 8@—s)Nz(a)yds— S(t—h—a)Nz(s)ds“z+
0

0
+ ”‘_f:S(t—s)Nz(s)ds”z+ ”‘Zhs(t—h—s)Nz(s)dsﬂz

< [[(8(e) =8 (e — 1)) Ly_o N2z +2 (3l 574, o, VN2 Lot0, 721

Then by first letting »|0 and then ¢)0 and using (4.12) and the pre-
compactness of L;,_,Nz, we see that L,Nz is equicontinuous on the left.
Finally,

W) N 2llogo, 7; 2) < NGLoge, 1N Zll Logo, 7 2
< gl Log, guP o(6)a
<a

by (4.12). So L,Nz ie uniformly bounded and hence we may apply the
Arzela—-Ascoli theorem to conclude that L, Nz is precompact. Similarly
it can be shown that I;B is compact from IL*[0,T; U]—->C[0,T;Z] and
hence ¢ maps § into a precompact set in 8. Thus there is a fixed point
in |2ller,z; 21 < @ and so the nonlinear system is exactly controllable
to a ball of radius a(1—K)/R in V.

Remark. In applications the compactness requirements in (c) may
arise in two different ways. Either the operators N and B are compact
or the semigroup 8§(¢) smooths the space Z yielding, for example, that
the map L,B is bounded from L*[0, T; U] into ¥V where the injection
¢: ¥—>Z is compact. In order to verify this assumption, use will be made
of Rellich’s Theorem [1] which states that if £ is an open bounded set
in R", then the injections

H’?(Q)-»H““ (),
HY (Q)—~Hy™'(Q)
are compact.

4.2. Method 2. (a) Application of the Bohnenblusi—-Karlin Theorem
(Strong version). In the application of the Contraction and Schauder fixed
point theorems we used the controllability of the linear system to con-
struct a control which drove the system to any » € V. In general there
will be many controls which perform this task, so if we do not specify
the control we are led to the application of a set-valued fixed point theorem.
Hence we illustrate this approach with an application to approximate
controllability. Later we will make some remarks indicating the modifi-
cations required if instead we consider controllability to a subspace.
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We consider the system (4.2), namely
¢ 4
2(t) = [ 8(t—s)Nz(s)ds+ [ 8(t—8)Bu(s)ds
0 0

which we write as
z = F(z,u)

where F: C[0,T;Z]xEP[0,T; U]->C[0,T;Z]. We will assume that
the control action is bounded, 8o that u € %,,, where

Uy ={uelP[0,T; Ul: lullppp,r o< M},
Given any 2, € Z and e > 0 define the set
(4.18) 8 ={2eC[0,T;Z]: (2o, r;z < @ 2(0) = O‘, l2{T) —24liz < &}

Clearly § is closed, convex and bounded.

Now define the set-valued map ¢ on § with values in the subsets
of §,

(419) () = {z € 8: Ju ey such that z = F(b, u) with b € 8}.

The objective is to prove the existence of a fixed point of ¢, that is to
show there exists z e § such that z ep(2). This will imply there exists
a % € %, such that

z = F(z, )

and z e O[0, T; Z] satisfies |2(T) —2,]l; < e If this can be done for any &
and any 2, in a ball of radius r in Z, then (4.2) is said to be approzimately
controllable to an r-ball. We have the following theorem:

THEOREM 4.3. Constder the mild solution
2(t) = L,Nz+1L,Bu
of the nmonlimear system
2 = Az+Nz+Bu, 2(0) =0.
Assume that
(a) the nonlinear operator maps Z to a larger space Z such that

N: C[0,T;Z)->L°[0,T;Z] (s=1)
and satisfies
(4.20) VN2l Logo,1; 27 < e(ll211) l121l

where the morms om the right-hand side are computed in C[0,T; Z]. The
function o(-): R*—>R* {8 continuous and ¢(0)—>0 as §—0;
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(b) the semigroup S(1) gemerated by A satisfies
St)eZL(Z,Z) for t>0

(4.21) I8®)zlz < gB)lellz,  1Fllzopn =¢< o
where ¢ 18 a constant dependent on T and w is a positive real number defined by
1/s4+1jw =1
and
(4.22) H [ 8¢~ s)Bu(s)dsH oo,z < B llzao,z 07
0

where the constant R depends on T';
(c) the following compaciness conditions are satisfied:

the operator L;B: LP[0,t; Ul—=Z 1is compact for each te[0,T]
and
the operator L,N: C[0,1;Z]—~>Z 48 compact for each te[0,T].

(d) a £3 chosen so that the condition

(4.23) (R+1De

supe() =K <1
I<a

18 satisfied, where the closure of the ramge of G (defimed by (2.2)) contains the
ball of radius 1 when the controls are resiricted to lie in %,.

Then the system described by (4.2) 48 approximately controllable from
the origin to any final state, z,, satisfying
. a(l—K)I
( ) 21l 2 R
tn the time interval [0, T'].

Proof. First we show that ¢(b) is nonempty for each b e § and @(b)
is a subset of 8. If b e C[0, T; Z] and #z = F'(b, w) then it is easy to show
that 2 eC[0,T; Z]. Moreover, if u €%, we have

lz()llz < 1§l Lo,y |1 V2l Lojo, 7 7 + B M
< 1@l zeogo, ?’UP e()a+REM.
=
If we set

a
M = —(1—|Fll,e su 7]
= (L — gl Logo, m ng( )
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which is positive by condition (d), then
elero,r,z) < a.

By linearity the closure of the range of G when the controls are restricted
to lie in #,, contains the ball of radius MI. Moreover,

T
lea— [ 84T — ) Wb (8) ]|, < lizall + 1Bz, 1 2Bl gogo, 2.4
0

< lleall + 1§l ogo, ) 8UP e(6) &
0<a
<r+e—RM << Ml,
Hence there exists a control # € %,, such that if
z =F(b, %)
then
I2(T) —2lz < ¢

for any small & > 0, and so ¢(b) is nonempty.

Now we show that ¢(b) is convex. Let 2,2, €¢(b) =« 8, then for
0<A<1, 2,4+ (1—A)2z; € § since § is convex and there exists u,,¢ =1,2
guch that

2(l) = LiNb+LiBu, ¢ =1,2.
Hence
Az, (1) + (1 —2A)2,(t) = L Nb+L,B(Auy+{(1—A)u,).
But
U =2u,+(1—A)u, € ¥y

since %, is convex, 80 ¢(b) is convex.

We can prove that L \Nz: C[0,T;Z)~>C[0,T;Z] is continunous
and L. Bu: L*[0,T; U]-C[0, T; Z] is compact as in the proof of Theo-
rem 4.2. Now let b,—b, 2,2, where z, = ¢(b,); then there exists a sequence
{u,} = ¥, such that

2y = F(bn! u’n)'

Since %), is bounded, there exists a subsequence converging weakly
to a point u € L*[0, T'; U). But since %, i8 convex and strongly closed
it is weakly closed and hence 4 € . So

z2,(t) = L,Nb,+L,Bu,.
Now using the compactness of L, B, the continuity of L., N and the



THE APPLICATION OF FIXED POINT THEOREMS 333

closedness of § we have
z(t) = L,Nb+L,Bu
or
z = ¢(b).

So we have satisfied condition (b) of Theorem 3.3 and all we need to show
is that ) ¢(d) is contained in some sequentially compact sct. But this
bed

follows from the boundedness of S and #,, and the compactness of the
operators L,N and L,B.

Thus ¢ has a fixed point and the nonlinear system is approximately
controllable to an r-ball.

Remarks. 1. If we replace condition (d) by

- - -R ]
(4.25) 1>K = ("9”1.‘”[0,11 + T ||9'||L"’[o.1']) SBEP e(6)
where we assume S(t) € £(Z, V), t > 0,

(4.26) IS@2ly <M lelz, 7eLP[0,T]

with P > w and V the subspace to which the linearized system is exactly
controllable, then the nonlinear system is exactly controllable to a ball
of radius r in V. The proof is straightforward and carried out by setting

8 = {ZEG[O,T;Z]; |]z"(,'[0,T:Z]<ay z(O) =01 Z(T) =zl}'

(b) Application of the Bohnenblust—Karlin Theorem (Weak version)

In the application of the strong version we imposed compactness condi-
tions on B, N and/or the semigroup §(¢) in order to obtain a compact
set in C[0, T;Z]. We can also obtain compactness by considering a re-
flexive Banach space (for example L"[0, T'; V]) and then working with
the weak topology when every bounded set is weakly precompact.

We again consider the system (4.2)

t ¢

z(t) = fS(t—s)Nz(s)d8+ fS(t—s)Bu(s)ds
0

0
and write
2 =F(z,u)
but now

F: L'[0, T; V] xI?[0, T; U]->L[0, T; V]

where U, V are assumed to be reflexive Banach spaces and oo > r, p > 1.
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We again define
Uy = {weL”[0,T; U): lulgep,r, vy < M}

and assume that the linear system is exactly controllable to V where
the range of @ contains a ball of radius I when the controls are restricted
to #,.

We now define a space X as the space of equivalence classes of r-
integrable measurable functions with

lelix = Cle(O)z + e (TZ + el prio, ;2 1M

where Z is a reflexive Banach space. This norm makes X a reflexive Ba-
nach space.
Let

(4.27) 8 ={zeX:2(0) =0, 2(T) =2, Plzrp,rz < a}
where 2, € V. Then define a map ¢ from § to the subsets of S by
(4.28) @(b) = {#z € 8: Ju € %y such that 2 = F(b, u) with b e §}.
We now apply the weak version to obtain a fixed point of ¢.
THEOREM 4.4. Let a nonlinear system be described by
2z =Az+Nz+Bu, z(0)=0
and consider tis mild solulion
z(t) = L,Nz+L,Bu.

Assume that
(a) the nonlinear operator maps Z to a larger space Z such that

N: L'[0,T; Z1>L°[0,T; 2] (r,2>=1)
i8 weakly continuous and satisfies
(4.29) | N2lizege, ;2 < e(ll2ll) llzl|

where the norms on the right-hand side are computed in L7[0, T; Z). The
function o(-): R*—>R* i3 continuous and o(6)—0 as 6-0;
(b) the semigroup S(t) generated by A satisfies

S eLZ,Z)nLZ,V) for t>0
(4.30) IS W2z < Ft)lelizy  NFlzo,m = ¢ < o0
(4.31) I8 2lly < g lelizy,  Glopm =8< o

where ¢ and d are T-dependent constanis and where ¢, w are positive real
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numbers defined by

1/r =1jg+1/s—1, 1jlo+ljs =1
and

(4.32) I J 80— Bu(s) 1,y < Bllzoto

where constant R is T-dependent;
(c) a 18 chosen so that the condition

Rd
(—+c) sup o(f) = K <1
l ] <a
t8 satisfied.
Then the state of the system desoribed by (4.2) cam be steered from the
origin to any final state, z,, satisfying

1-K)7
s1-E) _

(4.33) Il < —%

in the time interval [0, T].

Proof, First we show that § is weakly closed in X. Let 2z, converge
weakly to 2z in X with {2,} = 8. Thus

1y 20(0)0ze, 2+ Sy 20 (T 20,2+ {fss #nd Lr'10,1: 241, £700, 1521

converges to
Cfry 20000z 4 fay #(T) 20,2+ f3) 2D 1r' 10,13 2%, 1710,7:2)

for all (fy, f., fo) € Z2* xZ* XL [0, T; Z*] with 1/r+1fr' =1. Take f, =fy
= 0; then

{frr 2Oz z>{f1; 20z 2 Vi€ Z".
But 2z, € 8, and 80 2,(0) = 0; hence
f112(0))z02 =0 VieZ,
thus z(0) = 0. Now take f;, = 0, then a similar argument yields
{fry1—2(TVges =0 VfyeZ*
or

2(T) = 2.
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Since 2z, converges weakly to z,
ey < liming o, %
= liminf([}2,(0)lz + 2 (T)iZ + [2allLrto, 7. 27) -
Thus
e (TIZ + Hellzrio, ;27 < leallz +liming iz, {zrpo, 7, 27

Hence |z||zr,z;z; < @ and so z €8, thus § is weakly closed. The proof

that § is convex is the same as in Theorem 4.3 and to show that ¢(b)
is nonempty and lies in § we have

I2lipre, 7; 21 < 192910, V2| zo0, 7,2y + B M
< gl zage, 2 E:P e(6)a+BM.

a
Now let M = f(l_ igll oo, SUP 0(0)); then
0<a

el zrro, 7,27 < @.
Also
T
“z!._' f S(T"'s)Nb(s)ds”V < l2dlly + 191l oo, %:ap e(6)a
1]

< a(l—K)d
- R

+ ll?ill;,-[o,m supo(f)a < Ml
i<a

by condition (¢). So there exists a control % e #,, such that if
z = F(b, %)

then 2(T) = 2,, and so ¢@(b) is nonempty.
Since § is bounded in X and |} ¢(b) = 8 with X reflexive, it follows
bess

that | J ¢(b) is contained is some weakly sequentially compact set. So
bes

all we have to prove is that if b, —b weakly in X, 2,—»2 weakly in X where
2, € p(b,) then 2 e@(b). To do this we use condition (a) where by the
weak continuity of ¥ we mean that if 2,—2z weakly in L"[0, T'; Z], then
Nz,->Nz weakly in L°[0, T; Z]. It follows that N is weakly closed and
our main problem is to extend this to prove that L, Nz is weakly closed
from X to X. We prove this in the following lemma.

LeMMA. If N is weakly closed from X to L°[0, T; Z] then L, Nz i3 weakly
closed from X to X. (Here an operator 18 weakly closed iff z,—z weakly,
Nz,—»y weakly, imply Nz =y.)
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Proof. Assume Nz,—y weakly, that is
<h, N zn)L"[o.r;Z'].L'[o.T;Z]
converges to <k, Y>re(o, 1,34, 1%0,7:2) Where 1/s'+1/s8 = 1.
Let h be given by
T
h(t) = [ 8%(a—1)f(s)ds +8"(T—1)g = hy(t) +ha(t)
¢

where fe L"[0,T; 2], g€ Z*. Such an k is allowable since
B3l o'to, 7701 < 18 (W)lzago, ol S| lizréo, 2]
and
1/ =1—-1/8 =1/¢g—1)r =1/qg+1/r' =1,
hall oo,z < 18* (oo, llglizs -

Now

T T
Chy YD 12 (0,774, L50,752) =J <f 8*(s—t)f(s)ds +8* (T —1)g, ?I(t)>§._§dt
0 ]
T T T
= [ [ {f(8), 88— 0)Y(t)Dze zdsdt+ [ <g, 8(T—1)y(1)>ge 7kt
o ¢ 0
T & T
= [ [ @), B(s—1)y()zzdsdt+ [ <g, S(T— )y (1)) zezdt
0 0 0

T
= [ <F(8); Lyydze 298 + g, La¥dze z
0

= {fC)y Ly¥orr 0,128, 27107321 + <9 L2 YD 20,2
Thus if
Chy N2pdpsto,1; 24, 2%0,1:2) > <Ry Y2 L90, 7: 201, L%0,7:2)
then
fC)y Ly N2 D e, rz, e, mz + <8y Lo N2y ze, 2~
)y Loy¥orr 10,720, £710,1:21 + <9y LrYDz0 7

Thus if Nz,—»y weakly in L°[0,T;Z] then IL,Nz,—~L,y weakly in X.

Now if z,—2 weakly then {2,} is 2 bounded sequence and since ¥
maps bounded sets into bounded sets, it follows that {Nz,} is a bounded
sequence in L°[0, T; Z]. Hence there exists a subsequence {Nz,,} such
that z, —# weakly and Nz, —y weakly. But since N is weakly closed,

22 — Banach Center t. 14
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Nz =y. Now since Nz, —y weakly in L°[0, T; Z], L, Nz, —~L,y weakly
in X and L,y = I, Nz That is, LN is weakly closed on X and the Lemma
is proved.

Now since 2, € p(b,) there exists {u,} c %, such that

Zn = F(by, %,).

Moreover, since #,, is bounded in the reflexive Banach space L*[0, T'; U),
there exists a subsequence {x, } such that u, —u weakly in L?[0, T; U]
and u € %, since %, is strongly closed and convex, and hence weakly
closed. Thus relabelling

b,—b, z,-2z, wu,—u
and
z”(t) = L‘Nbﬂ +L¢Bun-

Now since LB € £(L”[0, T; U], X), it is easy to show that L,B
is weakly continuous and hence

L,Nb, = 2,(t) —L;Bu,—z(t) —L,Bu weakly.
But using the Lemma we must have
L,Nb = z(t)—L,Bu
or

2z = @(b).

So all the conditiong for the weak version of the theorem are satisfied
and hence there is a fixed point for ¢.

§ 5. Remarks

1. The results in this work have been obtained for the time-invariant
nonlinear system (1.1) but they can be extended to the case where the
operators A, B and N are time-dependent. A mild solution of the system
now has the form

2(t) = [U(t,8)N(s)z(s)ds + [ U(t, s) B(s)u(s)ds

where U (1, 8) is the mild evolution operator associated with A (t) (see [1]).
The controllability definitions in §2 can be directly extended and the
fixed point theorems can be applied as before with a few modifications.
In particular, the smoothing property of U (t, 8) now leads to conditions
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of the form
1T, 8)zllz < g(t—8)ellz, geL®[0,T]
when U(i,8) e L(Z,2), t>s.

2. A more general nonlinear system is one where the nonlinearity
depends on both the state and control variable. The analysis can be
adapted to deal with this case, where we have the system

2 = Az+Bu-+f(z,u), 2(0)=0

with a mild solution
i ¢
2(t) = [8(t—8)f(2(s), u(s))ds+ [S(t—s)Bu(s)ds.

Using the techniques in Method 1 of Section 4 we must obtain a fixed
point (z, ) of the operator

[ZJ (1) = \L'f(z, ) +L,B@G~ [v—Lypf(z, w)],
Pla] ™ T @ o—Lofie, w1 0.

We can adapt Theorem 4.1 directly to obtain a unique fixed point of ¢
in the space L"[0, T; Z] <X L?[0, T'; U]. In the application of the Schauder
fixed point theorem we require a fixed point of ¢ in C[0,T;Z] %
x L?[0, T'; U]. This presents some extra difficulty since we can no longer
employ the Arzela—Ascoli theorem to ensure the compactness condition
for the second component. However, by examining the dual mapping
(G~%)* this compactness condition can often be verified.

Theorems 4.3 and 4.4 and also be extended with suitable modifica-
tions to the conditions on U (¢, 8) and the nonlinearity.

3. In the linearization process we assumed that (Z, #) was a solution
of the nonlinear system. This simplifies the analysis but the results follow
when (Z, W) does not satisfy the original differential equation. In the
general case we have

2 =A2z4+Bu-+t+Nz+w, 2(0) = z,—Z(0)
where w is known, and a mild solution is
2(t) = L(Nz+w)+LBu+8 () (z,— 2(0)).

If we choose Z such that Z(0) = z,, the control generated using Method 1
has the form

u(t) = G [v—Lp(Nz 4 w)] (1)
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and so we need a fixed point of the operator
(¢2) (t) = Ly(Nz+w) +L,BG " [v—Lp(Nz4w)].

The appearance of the known quantity w makes only minor changes in
the application of the fixed point theorems to obtain controllability
results. |

§ 6. Examples

In this section we consider two very simple examples.

ExXAMPLE 6.1. We consider a diffusion equation with a nonlinearity
and apply Theorem 4.1. Let

2y =2, +Nz+u, 2z(0,t)==z(1,t) =0.

If A2 =z, 2ze D(A) where D(4) = H*(0,1)nH}(0,1) then A gene-
rates a strongly continuous semigroup S(?) on L?[0,1] given by

Sz = Y e " g, (pn, 2>
il
where ¢, (¢) = V2sinnne. If u e L? [0, T; L2[0,1]] it can be shown that
the linearized system is exactly controllable to Hy(0, 1) ([3]).
In Theorem 4.1 let Nz =2z* where Z = L*[0,1], Z = H'(0,1),
Z = H"0,1)and V = H}(0,1). Let r =3 = o0, ¢ = @ = 1. Then

IS ()2l sz 0,1y << €1 [I21l Er112g0,1)

C2 Cy 1
H(l)(o_])< tlld "2“31/2(0’”, _tr'q,' €L [0, T].

18 (2) =

Thus in (4.9) ¢ = ¢,T and d = 3¢,T**. Moreover, (4.5) is satisfied with
k(01, 0;) = ¢3(6,+ 0,).
Therefore
K = 2¢,a(jes T* R +¢,T)

where R is also dependent on T'. We now write K in the form K = §(T)a,
where 8(T') is a T-dependent constant. Hence if we have

ety = Wzt t0.m < 5 (1= B(E)

in the interval [0, T'), then the state of the system can be steered to v.
Furthermore, since the norm in V is equivalent to the norm in Hj(0, 1),
the nonlinear system is exactly controllable to a ball in H}(0, 1) of radius

a
E(T)

¥ (1—B(T)a)
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for constant ¥ > 0. For each value of T we can optimize the size of this
region. The constraint K < 1 implies that a << 1/8(T) and for a = 1/25(T),
K =1/2 we have the maximal result

14
S TV TIL IR

ExAmMPLE 6.2. To illustrate the application of Theorems 4.2, 4.3 and
4.4, we consider a controlled hyperbolic system with nonlinearity,

Wy = Woy +Nw -+ bu,
w(0,1) =w(l,?) =0, w(z,0)= w(z,0)=0.

We define Aw = —w,_,, w e D(A4) with D(4) = H*(0,1)nH:(0,1). The
system is written in the form

z2(t) = Az(1)+Nz(t) +Bu

where

e} a8 (i) af

D(4) = D(A) xD(4"™).

Then A generates a strongly continuous semigroup S(f) on D(AY%)x
xL*[0,1] given by

o0 1 - m
2 {cosnm} &Y oD+ o sinnw 2", %)}%

§(t) [:] ="
2 {—nnsinnnt (', @,> +cosnnt (2" @0} ¢

e 7iem] -

o

where ¢,(¢) = V2sinnrz. Now let b = ¥ b,p, where b, = <b, p,> and
n=1

assume that liminfn[b,| > 0 and b, #0,n =0,1,2,... (e.g. b, =1/n).

n—>00
Then, if 4 € L*[0, T'] it can be shown that the linearized system is exactly
controllable to D(A4) xD(A"?) for T > 2 (see [8]).

The type of nonlinearity to be considered depends on the theorem
to be employed. In Theorems 4.2 and 4.3, N is chosen so that the operator
Iy N is compact from C[0,t; Z] to Z for all t € [0, T]. Theorem 4.4 does
not require such a condition but N is chosen to be a weakly continuous
operator. Certainly, in the particular case when N is a compact operator
the requircment for Theorem 4.4 is satisfied. The rest of this example
is devoted to the application of Theorems 4.2 and 4.3 in the case where
Nuw = wt,
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(i) Application of Theorem 4.2
Let Z = D(A")xL*[0,1] and V = Z = D(4) xD(4"). Then condi-

tions (4.13) and (4.14) are satisfied with g(t) = g(t) = 1. Let Nz = [122]
where

N: C|o, T; D(A"*) xL*[0,1]]~L*[0, T; D(4) x D(4"*)]
and therefore (4.12) is satisfied with ¢(6) = €0 for some constant C.

Now consider

t
LiBu = fS(t—s) [g]u(s)ds;

then
- o0 b ¢ = [~ ™ =
Y n .
Z {—Efsmmc(t—s)u(S)d&}% 2 NnPn
LBu=|") | =| " :
Z {bﬂfcosnn(t—s)u(s)ds}% 2 {o P
l_ ne=l 0 - e 1222] -

Suppose T' = 2; then the Fourier coefficients of % in L2[0, 2] are
2,
{ [ sinnwsu(s)ds), n =0,1,2,... Now let
0

u(t—s8), sef0,t],

tie) = ‘0, se(t, 2]

and take b, = 1/nn, then

A

2
Ny = (nf-:)’ fsinmcsu(s)ds.

0

Since u, € L*[0,2], we have

00
J
D {(nm)n,}2 < gl e, < Il

ftem]

However, if z € D(A4) then

el = D {(nm)<z, pod}

n=l

Furthermore,

o0
D nna) < el -

nu=]l
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Hence
L B’“”i)(j)xn(zlﬂ) <2 ||’“Hi2[o,z]
for ¢t {0, 2)]. Thus for each ?€e[0, 2],

MLy Bul| py gy ot 112) < V2 Il L2g0,270

Clearly IL,Bu is bounded in D(A4)xD(A"®) if u is bounded in L2[0, 2]
and so L,B is a compact operator from I2[0,t] to D(4")xLz[0,1]
for all ¢t e [0, 2].

Now for all ¢ € [0, 2]

¢
0
”L‘NZI!E(Z))(D(Zlﬂ) < JII[NW(', 8)]

' w(-, 8)
<S5
JiL o
Hence IL;Nz is bounded in D(4)xD(AY) if z(1) is bounded in
C[0,2; D(4A)xD(4"")] and so LN is a compact operator from

0[0, 2; D(AY*) x L*[0, 1]] to D(AY?) xIL2[0,1] for all ¢ € [0, 2].
Finally, if

t
ds = [ 1w (-, 9)llpaueds

D(4)x D(412)

ds.
D(42yx L2[0,1]

Illpay< pavy < (1 — fya)a

where f,, f; are constants, then all the conditions of Theorem 4.2 are
satisfied and hence there exists a fixed point of (4.4) in |2]lcqo, 7; pat/2)x £210,1))
< a. Thus for T = 2, the nonlinear system is exactly controllable to v,

(ii) Application of Theorem 4.3

In Theorem 4.3 we considered the approximate controllability of the
nonlinear system. In this example, if » € L2[0, T'] the linearized system
is approximately controllable to D(A4Y?) xLt[0,1] for time T > 2 (see
{8]). As before we take Z = D(AY?)x L2[0,1], Z = D(4) xD(4**) and

Nz =[02]. Then condition (4.21) is satisfied with §(f) =1 and (4.20)
w?|

holds with g(8) = C0.
In the same way as above we show that

L,B: 1:[0,t]->D(4") xL2[0,1]
is compact for each te [0, T] and
L,N: C[o,t; D(A'V) =120, 1]]>D(4"*) xL2[0, 1]

is compact for each ¢t € [0, T']. Then ¢, as defined by (4.19), has a fixed
point provided

21l peav2yx 210,1) < 73 (1 — ye0) @
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for constants y,, y;. Consequently, the nonlinear system can be approxi-
mately controlled to a ball in D(4Y?) xIL*[0,1] for T > 2.
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