ArticleOriginal scientific text

Title

Equivalential algebras with conjunction on the regular elements

Authors 1

Affiliations

  1. Institute of Mathematics, Pedagogical University of Krakow, Kraków

Abstract

We introduce the definition of the three-element equivalential algebra R with conjunction on the regular elements. We study the variety generated by R and prove the Representation Theorem. Then, we construct the finitely generated free algebras and compute the free spectra in this variety.

Keywords

Fregean varieties, equivalential algebras, free algebras, free spectra

Bibliography

  1. Burris, Stanley and Hanamantagouda P. Sankappanavar. A Course in Universal Algebra. Berlin: Springer, 2012.
  2. Freese, Ralph and Ralph Mckenzie. Commutator theory for congruence modular varieties. Vol. 125 of London Math. Soc. Lecture Note Ser. Cambridge: Cambridge Univ. Press., 1987.
  3. Hagemann J. "On regular and weakly regular congruences." Darmstadt: preprint no. 75, 1973.
  4. Hobby, David, and Ralph McKenzie, The structure of finite algebras. Vol. 76 of Contemporary Mathematics. Providence: American Mathematical Society, 1988.
  5. Idziak, Paweł M., and Katarzyna Słomczyńska. "Polynomially rich algebras." J. Pure Appl. Algebra 156, no. 1 (2001): 33-68.
  6. Idziak, Paweł M., and Katarzyna Słomczyńska, and Andrzej Wronski. "Commutator in equivalential algebras and Fregean varieties." Algebra Universalis 65, no. 4 (2011): 331-340.
  7. Idziak, Paweł M., and Katarzyna Słomczyńska, and Andrzej Wronski. "Fregean Varieties." Internat. J. Algebra Comput. 19, no. 5 (2009): 595-645.
  8. Kabziński, Jacek K. and Andrzej Wroński. "On equivalential algebras." Proceedings of the 1975 International Symposium on Multipe-Valued Logic, 419-428. Bloomington: Indiana University, 1975.
  9. McKenzie, Ralph, and George McNulty, and Walter Taylor. Algebras, Lattices, Varieties. Vol. 1. Monterey: Wadsworth and Brooks/Cole Advanced Books & Software, 1987.
  10. Słomczyńska, Katarzyna. "Free spectra of linear equivalential algebras." J. Symbolic Logic 70, no. 4 (2005): 1341-1358.
Pages:
63-75
Main language of publication
English
Published
2021-07-30