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Abstract. The n-tuples of commuting Hilbert space contractions are con-
sidered. We give a model of a commuting lifting of one contraction and
investigate conditions under which a commuting lifting theorem holds for an
n-tuple. A series of such liftings leads to an isometric dilation of the n-tuple.
The method is tested on some class of triples motivated by Parrotts example.
It provides also a new proof of the fact that a positive definite n-tuple has
an isometric dilation.

1. Introduction

By the dilation theory, started by Szökefalvi-Nagy, every contraction has a uni-
tary dilation. The dilation provides a simpler proof of the von-Neumann inequality.
It is a bit striking that the result does not extend to n-tuples of (commuting) oper-
ators. Precisely, a single contraction on a Hilbert space has the minimal, unique up
to isomorphism, unitary dilation (Nagy [15, 16]), a pair of commuting contractions
has a minimal unitary dilation but it is not necessarily unique (Andô [1]), while
for n ≥ 3 a unitary dilation may not exist (Parrott [11], Varopoulos [17]). More
precisely, the dilation does exist but it may fail to commute. Parrott gave the first
example of a triple of commuting contractions not admitting a (commuting) uni-
tary dilation. Varopoulos showed that for any n ≥ 3 the von Neumann inequality
may not be satisfied and hence the dilation may not exist. On the other hand,
an example of four contractions not admitting a unitary dilation and satisfying
von-Neumann inequality can be found in [5].
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The dilation theory is well developed, to mention for example results on row
contractions. We refer the interested reader for example to [12, Chap. 4, 5]. On
the other hand, the theory still remains of interest as indicated by the following
list of recent results [2, 3, 4, 6, 7, 9, 13, 14].

The paper is devoted to the problem of existence of an isometric (equivalently
unitary) dilation of three or more contractions. We approach the problem via com-
muting liftings. We give an equivalent condition for a triple to satisfy commuting
lifting theorem (i.e. there is a commuting triple consisting of an isometric dilation
of one operator and liftings of the two remaining). The result may be used for
n-tuples. The condition is not simple enough to be treated as a solution of the
problem. However, we show some examples in which it works well. In particular,
we apply it to some class of triples motivated by the Parrott’s example. Moreover,
we show that a positive definite n-tuple has a unitary dilation. Such a result is
known, but our proof gives a direct construction of the dilation.

2. Preliminaries

Let B(H,H′) denote the space of all bounded linear operators from H to H′,
where H,H′ are Hilbert spaces, and let B(H) = B(H,H) be the algebra of bounded
linear operators on H. A subspace H0 ⊂ H is a closed linear manifold. Let PH0

stand for the orthogonal projection onto H0 (i.e. P 2
H0

= PH0 = P ∗H0
).

Let T = (T1, . . . , Tn) be an n-tuple of commuting contractions, where Ti ∈
B(H), and let Tα =

∏n
i=1 T

αi
i , where α = (α1, . . . , αn) ∈ Zn and Tαi

i = T
∗|αi|
i for

αi < 0. The n-tuple U = (U1, . . . , Un) on a Hilbert space K is called a dilation of
T if and only if

(i) H ⊂ K,
(ii) U is a commuting n-tuple,
(iii) Tα = PHUα|H for any α ∈ (Z+ ∪ {0})n.

If the projection in condition (iii) may be canceled (i.e. Tα = Uα|H) the dilation is
called an extension. A dilation is called isometric or unitary if operators in U are
of the respective type. Since an n-tuple of isometries admits a unitary extension,
an arbitrary n-tuple of commuting contractions admits a unitary dilation if and
only if it admits an isometric dilation.

Note that a dilation is assumed to be a commuting n-tuple. If n-tuple fails to
admit a unitary dilation it is due to the commutativity requirement.

A unitary dilation is called regular if T∗α−Tα+ = PHUα|H for any α ∈ Zn,
where α−=(−min{0, α1}, . . . ,−min{0, αn}), α+ =(max{0, α1}, . . . ,max{0, αn}).
The n-tuple T is called positive definite if∑

v⊂u
(−1)|α(v)|T∗α(v)Tα(v) ≥ 0

for any u ⊂ {1, . . . , n}, where α(v) = (χv(1), . . . , χv(n)), |α(v)| =
∑n
i=1 χv(i) and

χv is the characteristic function of v ⊂ {1, . . . , n}. An n-tuple admits a regular
dilation if and only if it is positive definite [16, Theorem 9.1, Chap.1].
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As we mentioned, a contraction T ∈ B(H) admits a unique isometric dila-
tion where uniqueness is up to the unitary equivalence. For the model of such
dilation recall that DT =

√
I − T ∗T and DT = ran(DT ) are called the defect op-

erator and the defect space of a contraction T , respectively. Let D ⊂ C be the
unit disk with boundary T and let L2(T) and H2(T) denote the space of scalar
valued, square integrable functions and the Hardy space, respectively. The space
of square integrable functions valued in a separable Hilbert space H with the in-
ner product induced by the norm ‖f‖ = (

∫
T ‖f(z)‖2

Hdm(z))1/2 (m - normalized
Lebesgue measure) is unitarily equivalent to L2(T) ⊗H and is denoted with this
symbol. Similarly, H2(T) ⊗ H denotes the space of analytic, square integrable,
H-valued functions. Set Pn ∈ B(H2(T)) for the projection onto the subspace Czn
and Pn⊗I for the projection onto zn⊗H for n ≥ 0, where zn stands for the mono-
mial {z 7→ zn} in this context. In particular, 1⊗H denotes constant functions in
H2(T)⊗H. Let then

KT = H⊕ (H2(T)⊗DT )

be the Cartesian product Hilbert space with 〈·, ·〉KT
= 〈·, ·〉H + 〈·, ·〉H2(T)⊗DT

and
the respective norms. By the Nagy result the minimal isometric dilation of T may
by defined as an operator on KT given by the matrix

VT =
[

T 0
EDT Mz

]
, (1)

where E : DT 3 h 7→ 1⊗h ∈ H2(T)⊗DT is the embedding operator and Mz is an
operator of multiplication by the independent variable.

An operator LA ∈ B(K,K′) is called a lifting of A ∈ B(H,H′) if PH′LA = APH,
where H ⊂ K and H′ ⊂ K′. Note that ‖A‖ ≤ ‖LA‖. Let us recall the Nagy-Foiaş
lifting theorem [16, Theorem 2.3, Chap. 2]

Theorem 2.1
Let T , T ′ be contractions on the Hilbert spaces H, H′, and let VT , VT ′ be their
minimal isometric dilations on the spaces K, K′, respectively. For every bounded
operator S ∈ B(H,H′) satisfying

T ′S = ST

there exists a bounded operator CS ∈ B(K,K′) satisfying the conditions:

(i) VT ′CS = CSVT ,
(ii) S = PH′CS |H,
(iii) S∗ = C∗S |H′ ,
(iv) ‖S‖ = ‖CS‖.

By (ii) and (iii) the operator CS is a lifting of S.
Parrott noticed in [11] that the lifting theorem is equivalent to the existence

of a unitary dilation for a pair of contractions. Indeed, Theorem 2.1 for H = H′
and T = T ′ ∈ B(H) provides a lifting of any operator in the commutant of T . By
conditions (i) -(iv) of Theorem 2.1 the pair (VT , CS) is a dilation of (T, S). It is
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not yet an isometric dilation, but VT is an isometry. However, if we lift VT with
respect to the isometric dilation of CS , since a lifting of an isometry is an isometry,
we get a pair of isometries (CVT

, VCS
), so an isometric dilation of (T, S).

A similar construction could be used for an n-tuple of commuting contractions
provided the respective contractions can be lifted to commuting operators. Indeed,
for a given n-tuple of commuting contractions T = (T1, . . . , Tn) let k0 ≤ n+ 1 be
the maximal integer, such that Ti is an isometry for i < k0 (k0 = 1 if T1 is not
an isometry). Let CT = (CT1 , . . . , CTn

) consist of an isometric dilation of Tk0 and
corresponding commuting liftings of the remaining contractions. Since a lifting of
an isometry is an isometry, CTi are isometries for i < k0 + 1, so at least CT1 is
an isometry. If k1 is the maximal integer such that CTi are isometries for i < k1,
then k0 + 1 ≤ k1. If we repeat the construction with CT we get CCT which is
a lifting of CT, so also a lifting of T and CCTi

are isometries for i < k1 + 1, so
at least CCT1

, CCT2
are isometries. Repeating the construction at most n-times

we get an n-tuple of commuting isometries which is an isometric dilation of T.
However, the lifting theorem does not extend to n-tuples of operators. For S,R ∈
B(H) commuting with T there are CS , CR by Theorem 2.1 but not necessarily
commuting, which is required in the construction of an isometric dilation described
above. Another idea is to construct a dilation of a pair and add a lifting of the
third operator afterwards. However, if we replace T , T ′ by n-tuples T, T′ the
operator CS may not exist even if T, T′ admit regular dilations - see [10] for
details.

Summing up, the problem of the existence of a dilation (isometric, unitary)
reduces to the problem of the existence of commuting liftings. More precisely, we
focus on conditions under which the lifting theorem holds for an n-tuple of contrac-
tions to be understood as the existence of commuting liftings of n−1 contractions
with respect to the dilation of the remaining one. A triple is representative for
n-tuples.

3. A lifting of a contraction

The lifting theorem does not hold for an arbitrary n-tuple. However, for
an n-tuple for which commuting liftings exist and the liftings may be lifted to
commuting contractions and so on, there is an isometric dilation of the n-tuple
as it was described in the last but one paragraph of the previous section. Lifting
CS may be constructed of the same norm as S by Theorem 2.1. However, for
the purposes of the construction of an isometric dilation it is enough if CS is a
contraction. Hence, if needed, we may use a wider class of liftings than constructed
in the proof of Theorem 2.1. Let us define:

Definition 3.1
Let T, S ∈ B(H) be two commuting contractions and VT ∈ B(K) be the minimal
isometric dilation of T . The operator CS satisfying conditions

(i) VTCS = CSVT ,
(ii) S = PHCS |H,

(iii) S∗ = C∗S |H,
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(iv) ‖CS‖ ≤ 1.

is called a contractive lifting of S with respect to VT or simply a contractive lifting
of S if the operator VT is clear.

The starting point for a construction of CS is a characterization of 2 by 2 block
matrices in [8, Chap. 4]. Since H ⊂ K, we may assume that K = H⊕H1 and

CS =
[
S 0
A B

]
.

Indeed, the matrix of CS is lower triangular by S∗ = C∗S |H . Since CS is a contrac-
tion, by [8, Theorem 3.1, Chap. 4] and CS is lower triangular we get

CS =
[

S 0
Y DS DY ∗Γ

]
, (2)

where Y ∈ B(DS ,H1), Γ ∈ B(H1,DY ∗) are contractions. Moreover, by [8, Lemma
1.1, Corollary 3.6, Chap. 4] it follows that for any contraction Y there is a contrac-
tion Γ such that CS is a contraction. Unfortunately, such CS does not necessarily
commute with VT . In Lemma 3.2 and Example 3.4 we show that for a given Y
there may not exist Γ such that CS given by (2) commutes with VT , but if such
Γ exists, then it is unique. Hence any contractive lifting CS is determined by the
contraction Y ∈ B(DS ,H1) and may be denoted by CS,Y . In other words, there
is a one-to-one correspondence between contractive liftings of S commuting with
VT and some subfamily of contractions in B(DS ,H1).

Lemma 3.2
Let S, T ∈ B(H) be a pair of commuting contractions and let VT be an isometric
dilation of T as in (1). Any lifting of S commuting with VT is of the form

CS,Y =
[

S 0
Y DS SY

]
, (3)

where Y ∈ B(DS , H2(T)⊗DT ) determines SY by

SY (zn ⊗DTh) = Mn
z (EDTS +MzY DS − Y DST )h (4)

for any n ≥ 0, h ∈ H.

To be clear, the lemma considers an existing lifting and investigates its form.
Hence (4) describes the existing contraction SY on a dense subset of its domain.
By the continuity, SY is determined by (4) on the whole domain.

Proof. By (2) only the formula for SY needs an explanation. By the commutativity
CS,Y VT = VTCS,Y we get[

ST 0
Y DST + SY EDT SYMz

]
=
[

TS 0
EDTS +MzY DS MzSY

]
.
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By the equality of (2, 1) entries the operator SY is defined on 1⊗DT by

SY EDT = EDTS +MzY DS − Y DST. (5)

However, by equality of (2, 2) entries SY commutes with Mz. Hence

SY (zn ⊗DTh) = SYM
n
z (1⊗DTh) = Mn

z SY (EDTh)
= Mn

z (EDTS +MzY DS − Y DST )h.

We have already emphasized that Lemma 3.2 does not show the existence of
a contractive lifting, but only investigates its form. Indeed, if we take an arbitrary
Y and try to use (4) as a definition of SY two problems appear. The first one is
that SY acts on H2(T) ⊗ DT , so among others on vectors of the form zn ⊗DTh
for h ∈ H, while the right hand side of (4) acts directly on h ∈ H. Hence (4)
properly defines a linear operator if the right hand side does not depend on the
choice of h ∈ H representing a certain k ∈ DTH. In other words, the right hand
side of (4) has to vanish on kerDT . Then SY is a properly defined operator on
zn ⊗DTH and as the right hand side is a bounded, so a continuous operator, the
definition extends to zn ⊗ DT . However, this does not imply that SY defined by
(4) is a bounded operator, while it should be a contraction. Indeed, the norm
of a value of the right hand side operator in (4) on some h is bounded by β‖h‖
for some constant β > 0. For boundedness of SY the considered norm should be
bounded by δ‖zn⊗DTh‖H2(T)⊗DT

= δ‖DTh‖ for some δ > 0. This does not follow
if DT is not bounded below.

Summing up, Lemma 3.2 does not provide a proof independent on Theorem 2.1
that there is Y properly defining a contractive lifting. However, since by Theorem
2.1 a lifting of S exists, by Lemma 3.2 it has to be of the form (3) and so there is
at least one operator Y properly defining SY and so CS,Y .

Remark 3.3
A contraction Y properly defines by (4) a linear operator SY if and only if

(EDTS +MzY DS − Y DST )|kerDT
= 0.

Then the lifting CS,Y is a contraction if and only if SY is a contraction.

In the following example Y = 0 does not define a lifting. In Remark 3.7 we
describe all contractions Y defining a lifting for this example. It is inspired by
Parrotts example [11]. The example is the case when EDTS +MzY DS − Y DST
does not vanish on kerDT .

Example 3.4
Let T, S ∈ B(H⊕H) be such that

T =
[

0 0
V 0

]
, S =

[
0 0
B 0

]
,

where V,B ∈ B(H), V is an isometry, B 6= 0 is a contraction. Then TS = ST = 0
and

DT =
[

0 0
0 I

]
, DS =

[
DB 0
0 I

]
.
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Note that kerDT = {(h, 0) : h ∈ H} is not invariant under S since S(h, 0) =
(0, Bh) /∈ kerDT for h /∈ kerB. Hence and by (5) for Y = 0 we get

S00 = S0EDT (h, 0) = EDTS(h, 0) = 1⊗ (0, Bh) 6= 0,

so S0 is not a linear operator.

From (2) a contractive lifting CS,Y is an extension of S if and only if Y DS = 0.
Since DS is the domain of Y, the latter means that Y = 0. Hence, the extension
of S with respect to VT is CS,0 and it exists if and only if S0 defined by (4) is
a well defined contraction. In particular, if S is an isometry, then DS = {0} and so
Y = 0 is the only choice. Let us investigate conditions under which an arbitrary
contraction S commuting with T admits an extension with respect to VT .

Proposition 3.5
Let S, T ∈ B(H) be commuting contractions and let VT be the minimal unitary
dilation of T . A contraction S admits a contractive extension with respect to VT
if and only if ‖DTSh‖ ≤ ‖DTh‖ for any h ∈ H.

Moreover, the extension is of the form[
S 0
0 I ⊗ S̃

]
,

where S̃ ∈ B(DT ) is the continuous extension of {DTh 7→ DTSh}.

Proof. By Lemma 3.2 the extension is given by

CS,0 =
[
S 0
0 S0

]
,

where, by (4), S0(zn ⊗ DTh) = zn ⊗ DTSh = (I ⊗ S̃)(zn ⊗ DTh). Hence S0 is
a well defined contraction if and only if S̃ is a well defined contraction, which in
turn is equivalent to ‖DTSh‖ ≤ ‖DTh‖ for any h ∈ H. This fact and Remark 3.3
finish the proof.

In particular, the only lifting of an isometry is an extension.

Corollary 3.6
An isometry S commuting with a contraction T admits a unique lifting with respect
to VT and the lifting is an isometry. The lifting is an extension of the form[

S 0
0 I ⊗ S̃

]
,

where S̃ ∈ B(DT ) is the continuous extension of {DTh 7→ DTSh}.

Proof. Since S is an isometry, DS = 0 and by (2) the only lifting is an extension.
Recall that ‖DTh‖2 = ‖h‖2 −‖Th‖2. Hence ‖DTh‖ = ‖DTSh‖ and so S̃ is a well
defined isometry. Since S and S̃ are isometries, CS is an isometry.
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Since not all contractions Y create a commuting lifting, it is natural to ask
which of them do. Let us investigate Y more thoroughly. Since Y maps DS to
H2(T)⊗DT , there is a natural decomposition Y =

∑∞
n=0 Pzn⊗DT

Y . On the other
hand, Pzn⊗DT

Y : DS 7→ zn⊗DT may be identified with an operator Yn : DS 7→ DT .
Then Pzn⊗DT

Y = zn ⊗ Yn and we get

Y =
∞∑
n=0

zn ⊗ Yn, (6)

where the convergence is in the strong operator topology. Subsequently (4) may
be reformulated as

SY (zn ⊗DTh) = zn ⊗ (DTS − Y0DST )h+
∞∑
i=1

zi+n ⊗ (Yi−1DS − YiDST )h. (7)

Let us describe liftings of S in Example 3.4.

Remark 3.7
Let T, S be as in Example 3.4 and let VT be the isometric dilation of T given by
(1). Our aim is to describe all possible liftings of S. By Lemma 3.2 it is enough
to describe all possible contractions Y ∈ B(DS , H2(T)⊗DT ) generating liftings.

Recall that
DT = kerT = {0} ⊕H, DT = P{0}⊕H

and
DS = DB ⊕H, DT ⊂ kerS, DS =

[
DB 0
0 I

]
.

Hence, by (7), we get

SY (zn ⊗ (0, k)) = SY (zn ⊗DT (0, k)) =
∞∑
i=1

zi+n ⊗ Yi−1DS(0, k)

= Mn+1
z

∞∑
i=0

zi ⊗ Yi(0, k) = Mn+1
z Y (0, k)

(8)

for an arbitrary contraction Y generating a lifting. On the other hand, SY (zn ⊗
DT (h, 0)) = 0 and DST (h, 0) = (0, V h), which, by (7), implies

Y0(0, V h) = Y0DST (h, 0) = DTS(h, 0) = DT (0, Bh) = (0, Bh)

and
Yi(0, V h) = YiDST (h, 0) = Yi−1DS(h, 0) = Yi−1(DBh, 0)

for i ≥ 1 and any h ∈ H. Hence we get

Y (0, V h) =
∞∑
i=0

zi ⊗ Yi(0, V h) = 1⊗ (0, Bh) +
∞∑
i=1

zi ⊗ Yi−1(DBh, 0)

= 1⊗ (0, Bh) +MzY (DBh, 0).
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Summing up,

Y (h, k) = Y (h, 0) + Y (0, k) = Y (h, 0) + Y (0, V V ∗k) + Y (0, PkerV ∗k)
= Y (h, PkerV ∗k) + 1⊗ (0, BV ∗k) +MzY (DBV

∗k, 0).

In other words, an arbitrary contraction Y defining a lifting of S is determined by
its restriction Y |DB⊕kerV ∗ . However, an arbitrary contraction Ỹ : DB ⊕ kerV ∗ 7→
H2(T)⊗DT defines a bounded operator Y : DB ⊗H 7→ H2(T)⊗DT ,

Y (h, k) = Ỹ (h, PkerV ∗k) + 1⊗ (0, BV ∗k) +MzỸ (DBV
∗k, 0), (9)

which may not be a contraction. More precisely, if ‖B‖ < 1, then Ỹ of sufficiently
small norm (any contraction multiplied by a sufficiently small constant) generates
by (9) a contraction Y . On the other hand, since 1 ⊗ (0, BV ∗k) is orthogonal to
MzỸ (DBV

∗k, 0), we get

‖1⊗ (0, BV ∗k) +MzỸ (DBV
∗k, 0)‖2

H2(T)⊗DT

= ‖1⊗ (0, BV ∗k)‖2
H2(T)⊗DT

+ ‖MzỸ (DBV
∗k, 0)‖2

H2(T)⊗DT

≤ ‖(0, BV ∗k)‖2
H⊕H + ‖(DBV

∗k, 0)‖2
H⊕H

= ‖BV ∗k‖2
H + ‖DBV

∗k‖2
H = ‖V ∗k‖2

H

= ‖(0, V ∗k)‖2
H⊕H

and the estimate may not be improved if ‖B‖ = 1 as ranV ∗ = H. Consequently,

‖Y (h, k)‖H2(T)⊗DT
≤ ‖Ỹ (h, PkerV ∗k)‖H2(T)⊗DT

+ ‖(0, V ∗k)‖H⊕H
≤ ‖Ỹ ‖‖(h, PkerV ∗k)‖H⊕H + ‖(0, V V ∗k)‖H⊕H

≤ (1 + ‖Ỹ ‖2)1/2‖(h, k)‖H⊕H.

Hence, if ‖B‖ = 1, then Y may not be a contraction even if ‖Ỹ ‖ is very small.
By a direct calculation one may check that any operator of the form (9) satisfies

(EDTS +MzY DS − Y DST )(h, 0) = 0.

Hence, since kerDT = H ⊕ {0} and by (8) we get by Remark 3.3 a one-to-one
correspondence between liftings of S and contractions in B(DB ⊕ kerV ∗, H2(T)⊗
DT ) such that (9) defines a contraction.

Let us give a few hints how to find the proper contractions Ỹ . The case
‖B‖ < 1 was explained. For an arbitrary contraction B, Ỹ = 0 generates Y 6= 0,
which in turn generates the lifting CS,Y which is not an extension. The other
way is to get orthogonality of summands in (9), which may be obtained using
decomposition (6) of Ỹ . For example, let Ỹn = 0 for odd n or simply Ỹn = 0 for
all n except one n0 6= 0.
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4. Triples

In Section 2 there was described a construction of an isometric dilation of an
n-tuple, which in the case of the triple R,S, T ∈ B(H) starts with the dilation of
T to the isometry VT and liftings of R,S to contractions CR, CS commuting with
VT . The problem that appeared was that CR, CS may not commute with each
other and if so, the further construction fails. We investigate the condition under
which CR, CS commute.

Proposition 4.1
Let R,S, T ∈ B(H) be a triple of commuting contractions and let

CR,X =
[

R 0
XDR RX

]
, CS,Y =

[
S 0

Y DS SY

]
, VT =

[
T 0

EDT Mz

]
be the liftings of R,S and an isometric dilation of T , respectively.

Operators CR,X , CS,Y commute if and only if

Y DSR+ SYXDR = XDRS +RXY DS . (10)

Proof. The commutativity between CR,X and CS,Y leads to the equality[
SR 0

Y DSR+ SYXDR SYRX

]
=
[

RS 0
XDRS +RXY DS RXSY

]
.

The equality of entries (2, 1) yields the condition (10) to be necessary. To show
it is a sufficient condition we need to show that if it holds, then RXSY = SYRX .
However, since RX , SY commute with Mz it is enough to show commutativity on
1⊗DT . Note that 1⊗DT = ran(EDT ). On the other hand, from (5) we get

RXSY EDT = RX(EDTS +MzY DS − Y DST )
= RXEDTS +RXMzY DS −RXY DST

= (EDTR+MzXDR −XDRT )S +MzRXY DS −RXY DST

= EDTRS +Mz(XDRS +RXY DS)− (XDRS +RXY DS)T

and, similarly,

SYRXEDT = EDTSR+Mz(Y DSR+ SYXDR)− (Y DSR+ SYXDR)T.

Hence, indeed (10) yields RXSY EDT = SYRXEDT .

Let us now describe precisely a dilation of the triple (R,S, T ) via liftings. We
start with the dilation to a pair of contractions and an isometry (CR, CS , VT ). Next
denote by VCS

the isometric dilation of CS . Since VT is an isometry, by Corollary
3.6 it admits the extension CVT

with respect to VCS
. Assume that CR may be

lifted to a contraction CCR
with respect to VCS

commuting with CVT
. Then we

get the commuting triple (CCR
, VCS

, CVT
). Since VCS

, CVT
are isometries, they

admit by Corollary 3.6 extensions with respect to VCCR
– the isometric dilation
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of CCR
. Hence (VCCR

, CVCS
, CCVT

) is the isometric dilation of the triple (R,S, T ),
where the operators commute by Proposition 4.1. Indeed, extensions are defined
by X = 0, Y = 0, so they satisfy the condition (10). In other words, the dilation
is constructed in three steps where the third one is always possible.

The second step of the construction makes the case when one contraction is
an isometry interesting.

Corollary 4.2
The triple R,S, T ∈ B(H) of commuting contractions, where R is an isometry,
admits a unitary dilation if and only if there is a contraction Y =

∑∞
n=0 z

n ⊗
Yn (each Yn : DS 7→ DT ) defining a lifting of S with respect to a dilation of T
as described in Lemma 3.2 and such that YnDSR = R̃YnDS for each n, where
R̃ : DTh 7→ DTRh is an isometry.

Proof. With the notation of Proposition 4.1, by Corollary 3.6 we have X = 0 and
RX = I⊗ R̃, where R̃ : DTh 7→ DTRh is an isometry. Since DR = 0, the condition
(10) simplifies to

Y DSR = (I ⊗ R̃)Y DS .

The remaining part follows by the decomposition of Y .

As mentioned before, the last step of the described construction of an isometric
dilation of a triple, which under the assumptions of Corollary 4.2 is the second step,
is always possible. This follows from Corollary 3.6 and the fact that extensions
always commute. Indeed, in this case we get an isometric dilation of a contraction
and extensions of two remaining isometries.

The interesting case is when the triple admits a dilation to an isometry and
liftings to contractions by some X, Y , where X 6= 0 or Y 6= 0 and it is not possible
to get an isometry and two extensions. Instead of a single example of such a case
we examine a class of triples based on the Parrott’s idea. The class is defined
in Example 4.3 below, where the Parrott’s example is obtained by taking V = I
and assuming B to be an isometry (denoted by V in the Parrott’s work) not
commuting with A. We are not going to give an equivalent condition for a triple
in the considered class to admit a dilation to an isometry and two contractions.
Our aim is rather to show some constructive approach to the dilation problem
following from the method described in Section 3. We give a necessary condition
which covers the Parrott’s result. Some sufficient condition is also presented.

Example 4.3
Let A,B ∈ B(H) be contractions commuting with an isometry V ∈ B(H) but
not necessarily with each other. Let us check conditions under which there exist
commuting liftings of R, S with respect to the isometric dilation of T , where

R =
[

0 0
A 0

]
, S =

[
0 0
B 0

]
, T =

[
0 0
V 0

]
.

With the notation of Proposition 4.1 let the liftings of R and S be determined by
contractions

X =
∞∑
i=0

zi ⊗Xi and Y =
∞∑
j=0

zj ⊗ Yj ,
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respectively. As noted in Remark 3.7, DT = {0} ⊕ H and so (8) describes SY on
a (linearly) dense subset of its domain. In particular, since ran(Xi) ⊂ DT we get
SY (zi⊗Xi(·, ·)) = M i+1

z Y Xi(·, ·). Taking advantage of Remark 3.7 we get the left
hand side of the condition (10) as

(Y DSR+ SYXDR)(h, k)

=
∞∑
j=0

zj ⊗ Yj(0, Ah) + SY

∞∑
i=0

zi ⊗Xi(DAh, k)

=
∞∑
j=0

zj ⊗ Yj(0, Ah) +
∞∑
i=0

SY (zi ⊗Xi(DAh, k))

(8)=
∞∑
j=0

zj ⊗ Yj(0, Ah) +
∞∑
i=0

M i+1
z Y Xi(DAh, k)

=
∞∑
j=0

zj ⊗ Yj(0, Ah) +
∞∑
i=0

M i+1
z

∞∑
j=0

zj ⊗ YjXi(DAh, k)

=
∞∑
j=0

zj ⊗ Yj(0, Ah) +
∞∑
i=0

∞∑
j=0

zi+j+1 ⊗ YjXi(DAh, k)

=
∞∑
j=0

zj ⊗ Yj(0, Ah) +
∞∑
k=0

zk+1 ⊗
k∑
l=0

YlXk−l(DAh, k)

= 1⊗ Y0(0, Ah) +
∞∑
j=1

zj ⊗
(
Yj(0, Ah) +

j−1∑
l=0

YlXj−l−1(DAh, k)
)
.

Similarly, the right hand side has the form

(XDRS +RXY DS)(h, k)

= 1⊗X0(0, Bh) +
∞∑
i=1

zi ⊗
(
Xi(0, Bh) +

i−1∑
l=0

XlYi−l−1(DBh, k)
)
.

Hence X, Y generate commuting liftings if and only if they satisfy

Y0(0, Ah) = X0(0, Bh) (11)

and

Yi(0, Ah) +
i−1∑
l=0

YlXi−l−1(DAh, k) = Xi(0, Bh) +
i−1∑
l=0

XlYi−l−1(DBh, k) (12)

for i ≥ 1. In particular, (12) for i = 1 and h = 0 yields

Y0X0(0, k) = X0Y0(0, k). (13)
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It turns out that (11) and (13) are not only necessary but also sufficient conditions
for the existence of commuting liftings of R, S with respect to the dilation of
T . More precisely, if X ′ and Y ′ are contractions generating liftings of R and
S, respectively, and satisfying (11) and (13), then the liftings do not necessarily
commute. However, the other two contractions X, Y defined as X = 1 ⊗ X0,
Y = 1 ⊗ Y0, where X0(h, k) = X ′0(0, k), Y0(h, k) = Y ′0(0, k) (so in particular X0,
Y0 vanish on the first coordinate) generate liftings of R and S, respectively, which
do commute. Indeed, by Remark 3.7, X ′, Y ′ satisfy (9) for the respective X̃ ′,
Ỹ ′ and are contractions. Then one can check that also X, Y satisfy (9) with
X̃ = 1 ⊗ X̃0 and Ỹ = 1 ⊗ Ỹ0, where X̃0(h, k) = X̃ ′0(0, k), Ỹ0(h, k) = Ỹ ′0(0, k) and
‖X‖ ≤ ‖X ′‖, ‖Y ‖ ≤ ‖Y ′‖, so X, Y are contractions defining liftings of R, S. Since
X, Y satisfy also (12) (note that Xi = 0, Yi = 0 for i ≥ 1), the liftings commute.

Summing up, without lost of generality we may assume that X = 1⊗X0 and
Y = 1⊗Y0, where X0 ∈ B(DA⊕H,DT ), Y0 ∈ B(DB ⊕H,DT ) and both operators
vanish on the first coordinate. By virtue of (9) our aim is to construct X̃0, Ỹ0
such that

X0(0, k) = X̃0(0, PkerV ∗k) + (0, AV ∗k)

and
Y0(0, k) = Ỹ0(0, PkerV ∗k) + (0, BV ∗k)

satisfy (11) and (13). However, note that (11) is precisely

X0Y0(0, V h) = Y0X0(0, V h).

Hence we look for a commuting pair X0, Y0 of the form above. In particular, since
A, B commute with V , the condition (13) for k = V 2h where h ∈ H is arbitrary
yields commutativity of A and B.

Conclusion: A necessary condition for the existence of commuting liftings of
R, S with respect to the dilation of T is commutativity of A, B.

Let us finish the remark by giving also a sufficient condition. Obviously we
assume that A, B commute. If AV ∗ commutes with BV ∗, then taking X̃0 =
Ỹ0 = 0 we get commuting liftings. Let us generalize this condition. Note that
since H = V ∗H, the commutativity AV ∗BV ∗ − BV ∗AV ∗ = 0 is equivalent to
AV ∗B −BV ∗A = 0.

If we take X̃0(h, k) = (0, V ∗Ak) and Ỹ0(h, k) = (0, V ∗Bk), then

X0(h, k) = (0, V ∗APkerV ∗k) + (0, AV ∗k)
= (0, V ∗A(I − V V ∗)k +AV ∗k) = (0, V ∗Ak)

and similarly
Y0(h, k) = (0, V ∗Bk).

Such X0 and Y0 are clearly contractions and they commute if V ∗A commutes with
V ∗B. The latter is equivalent to V ∗(AV ∗B − BV ∗A) = 0 which is more general
than previous commutativity of AV ∗ and BV ∗ (check B = V ).

In particular, if V is a unitary operator, commutativity of A and B is an
equivalent condition for the existence of commuting liftings of R and S with respect
to the dilation of T .
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5. Dilation of a positive definite n-tuple

In this section we show that an isometric dilation of an n-tuple of commuting
contractions may be obtained via extensions if and only if the n-tuple is positive
definite.

Lemma 5.1
Let T = (T1, . . . , Tn) be an n-tuple of commuting contractions on a Hilbert space
H. The following conditions are equivalent:

(i) {DT1h 7→ DT1Tih} defines contractions T̃i on DT1 and

VT1 =
[

T1 0
EDT1 Mz

]
, CTi

=
[
Ti 0
0 I ⊗ T̃i

]
for i = 2, . . . , n,

are the dilation of T1 and commuting extensions of T2, . . . , Tn;
(ii) operators Ti satisfy

‖h‖2 + ‖TiT1h‖2 ≥ ‖Tih‖2 + ‖T1h‖2 for i = 2, . . . , n.

Moreover, if the conditions above are satisfied and CT = (CT2 , . . . , CTn
), then∑

v⊂u
(−1)|α(v)|‖Cα(v)

T k‖2 =
∑
v⊂u

(−1)|α(v)|‖Tα(v)h‖2

+
∞∑
i=0

∑
v⊂u∪{1}

(−1)|α(v)|‖Tα(v)hi‖2
(14)

for any k = (h, 0) ⊕
∑∞
i=0(0, zi ⊗ DT1hi) and u ⊂ {2, . . . , n}, where Cα(v)

T =∏n
i=2 C

χv(i)
Ti

.

Proof. Note that operators CTi
considered in (i) are contractions. Hence we require

‖CTi
‖ ≤ 1 but not necessarily ‖CTi

‖ = ‖Ti‖. Recall that ‖DT1h‖2 = ‖h‖2−‖T1h‖2.
Therefore

‖DT1h‖2 − ‖DT1Tih‖2 = ‖h‖2 − ‖T1h‖2 − ‖Tih‖2 + ‖TiT1h‖2 (15)

for i = 2, . . . , n. If (i) holds, then T̃i are contractions. Hence

‖DT1h‖2 − ‖DT1Tih‖2 ≥ 0

and by (15) we get (ii).
Conversely, condition (ii), by (15), implies ‖DT1Tih‖ ≤ ‖DT1h‖ and so kerDT1

is invariant under Ti. Hence T̃i is a well defined contraction which may be extended
to DT1 . We get

VT1 =
[

T1 0
EDT1 Mz

]
, CTi

=
[
Ti 0
0 I ⊗ T̃i

]
,
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the well defined dilation and extensions, commuting by Proposition 4.1. It is clear
that ‖CTi

‖ = max{‖Ti‖, ‖T̃i‖} ≤ 1.
Let us show the second part. Fix u ⊂ {2, . . . , n} and denote T̃ = (T̃2, . . . , T̃n).

One can check that∑
v⊂u

(−1)|α(v)|‖Cα(v)
T k‖2 =

∑
v⊂u

(−1)|α(v)|‖Tα(v)h‖2

+
∞∑
i=0

∑
v⊂u

(−1)|α(v)|‖T̃α(v)
DT1hi‖2.

On the other hand, by the definition of T̃i we have
∞∑
i=0

∑
v⊂u

(−1)|α(v)|‖T̃α(v)
DT1hi‖2

=
∞∑
i=0

∑
v⊂u

(−1)|α(v)|‖DT1Tα(v)hi‖2

=
∞∑
i=0

∑
v⊂u

(−1)|α(v)|(‖Tα(v)hi‖2 − ‖Tα(v)T1hi‖2)

=
∞∑
i=0

∑
v⊂u

(
(−1)|α(v)|‖Tα(v)hi‖2 + (−1)|α(v∪{1})|‖Tα(v∪{1})hi‖2)

=
∞∑
i=0

∑
v⊂u∪{1}

(−1)|α(v)|‖Tα(v)hi‖2.

From the second part of Lemma 5.1 follows that:

Corollary 5.2
If an n-tuple T satisfies conditions of Lemma 5.1, then T is positive definite if
and only if CT defined as in Lemma 5.1 is positive definite.

Proof. Assume T is not positive definite, then∑
v⊂u

(−1)|α(v)|‖Tα(v)h‖2 < 0

for some u ⊂ {1, . . . , n} and h ∈ H. If 1 /∈ u, we have∑
v⊂u

(−1)|α(v)|‖Cα(v)
T (h, 0)‖2 =

∑
v⊂u

(−1)|α(v)|‖Tα(v)h‖2 < 0.

If 1 ∈ u, we obtain∑
v⊂u\{1}

(−1)|α(v)|‖Cα(v)
T (0, z ⊗DT1h)‖2 =

∑
v⊂u

(−1)|α(v)|‖Tα(v)h‖2 < 0.
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Hence, in the both cases CT is not positive definite.
Assume T is positive definite. Then∑

v⊂u
(−1)|α(v)|‖Tα(v)h‖2 ≥ 0 and

∑
v⊂u∪{1}

(−1)|α(v)|‖Tα(v)hi‖2 > 0

for each h, hi ∈ H and u ⊂ {2, . . . , n}. Hence the right hand side of (14) is
nonnegative and so ∑

v⊂u
(−1)|α(v)|‖Cα(v)

T k‖2 ≥ 0

for any k ∈ {(h, 0)⊕
∑∞
i=0(0, zi ⊗DT1hi), h, hi ∈ H}. Since the last set is dense

in the domain of CT, the tuple CT is positive definite.

It turns out that the construction of an isometric dilation of an n-tuple via
liftings, which we described earlier may be obtained via extensions instead of
liftings (which clearly satisfy the condition (10)) if and only if the n-tuple is pos-
itive definite. First, we describe more precisely the construction of an isometric
dilation for an n-tuple T = (T1, . . . , Tn). Assume the contractions T2, . . . , Tn
admit the extensions with respect to the isometric dilation of T1 and denote
T1 = (T1,1, T2,1, . . . , Tn,1), where T1,1 denotes the isometric dilation of T1 and
Ti,1 is an extension of Ti with respect to T1,1 for i = 2, . . . , n. By Proposition
4.1 the operators in T1 commute. Next dilate T2,1 to an isometry T2,2, extend
the isometry T1,1 to an isometry T2,1 with respect to T2,2 (which can be done
by Corollary 3.6) and assume that T3,1, . . . , Tn,1 may be extended to contractions
T3,2, . . . , Tn,2 with respect to T2,2. Put T2 = (T1,2, T2,2, . . . , Tn,2). One may pro-
ceed similarly and construct T3, . . . ,Tn. Note that Ti,k is an isometry for i ≤ k.
In particular, Tn is an isometric dilation of T. Since the construction requires the
assumption that contractions admit the respective extensions, it may not be done
in the general case. As we already mentioned such a construction is possible if
and only if T is positive definite.

Theorem 5.3
Let T = (T1, . . . , Tn) be an n-tuple of commuting contractions on H. The following
conditions are equivalent:

(i) T admits an isometric dilation Tn constructed as the last element of a
sequence Tk = (T1,k, . . . , Tn,k) on Kk for k = 0, . . . , n, where

(a) K0 = H and T0 = T,
(b) Kk = Kk−1 ⊕ (H2(T)⊗Dk) for k = 1, . . . , n, where Dk and Dk are the

defect operator and the defect space of Tk,k−1, respectively,

(c) Tk,k =
[
Tk,k−1 0
EDk Mz

]
and Ti,k =

[
Ti,k−1 0

0 I ⊗ T̃i,k−1

]
, where the oper-

ators T̃i,k−1 given by {Dkh 7→ DkTi,k−1h} are well defined and extend
to contractions on Dk for i 6= k.

(ii) T is positive definite.
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Proof. Since extensions are obtained by zero operators which clearly satisfy the
condition (10), each n-tuple Tk in (i) is a commuting n-tuple. Hence indeed, Tn

is an isometric dilation. Moreover, if Tk is defined, then Ti,k are isometries for
i ≤ k. In particular, the last but one tuple Tn−1 consists of isometries Ti,n−1
(for i ≤ n − 1) and a contraction Tn,n−1. Hence, if the tuple Tn−1 is obtained,
each Ti,n−1 may be extended with respect to the isometric dilation of Tn,n−1 by
Corollary 3.6. In other words, the condition (i) holds if and only if the sequence Tk

may be constructed up to the term n− 1. The last term may always be obtained.
We use induction on n. The base step n = 2 follows by Lemma 5.1. Indeed,

by the first paragraph of the proof, condition (i) is equivalent to the existence
of T1, which in turn is the condition (i) of Lemma 5.1. On the other hand,
since T1, T2 are contractions, the pair (T1, T2) is positive definite if and only if∑
v⊂{1,2}(−1)|α(v)|‖Tα(v)h‖2 ≥ 0, which is condition (ii) of Lemma 5.1.

The inductive step. Assume the conditions are equivalent for n − 1 tuples and
consider an n-tuple T. If T1 exists, then T satisfies conditions of Lemma 5.1,
where CT = (T2,1, . . . , Tn,1) is an (n−1)-subtuple of T1. Moreover, if T satisfies (i)
then CT satisfies (i) with (CT)k = (T2,k+1, . . . , Tn,k+1). Then, by the assumption
of the inductive step, CT is positive definite. Hence, by Corollary 5.2, T is positive
definite.

Conversely, if T is positive definite, then in particular condition (ii) in Lemma
5.1 is satisfied. Hence we may construct T1 = (VT1 , CT2 , . . . , CTn

). Moreover, by
Corollary 5.2 the (n− 1)-tuple CT = (CT2 , . . . , CTn

) is positive definite. Thus by
the assumption of the inductive step, there are (CT)k = ((CT )2,k, . . . , (CT )n,k)
for k = 1, . . . , n− 1. Note that (CT )2,1 is an isometric dilation of CT2 and (CT )i,1
are extensions of CTi with respect to this dilation for i = 3, . . . , n. Since VT1

is an isometry, it also has a unique extension with respect to (CT )2,1 by Corol-
lary 3.6. If we denote it by T1,2, then T2 = (T1,2, (CT )2,1, . . . , (CT )n,1) has all
the properties required in (i). Since T1,2 is an isometry, we may construct T1,3
as an extension of T1,2 with respect to (CT )3,2, which is the isometric dilation
of (CT )3,1 and get a commuting n-tuple T3 = (T1,3, (CT )2,2, . . . , (CT )n,2). By
recurrence, having defined Tk = (T1,k, (CT )2,k−1, . . . , (CT )n,k−1) we get Tk+1 =
(T1,k+1, (CT )2,k, . . . , (CT )n,k), where T1,k+1 is an extension of T1,k with respect to
(CT )k+1,k – the isometric dilation of (CT )k+1,k−1 for k = 3, . . . , n − 1. Hence we
get a complete sequence required in (i).

We can conclude from Theorem 5.3 that a positive definite n-tuple admits
an isometric, so also a unitary dilation. As we mentioned in Introduction such a
result is known ([16, Theorem 9.1, Chap.1]) in a more precise version where an
n-tuple is showed to admit a regular dilation if and only if it is positive definite.
It is not our aim to provide a new proof of [16, Theorem 9.1, Chap.1], so we do
not check whether the constructed dilation is regular or minimal. Our aim was
to show the construction of the dilation and to emphasise that using extensions
instead of liftings (which is a convenient choice by virtue of Proposition 4.1) has
limited usability.



[138] Zbigniew Burdak and Wiesław Grygierzec

References

[1] Andô, Tsuyoshi. "On a pair of commutative contractions." Acta Sci. Math.
(Szeged) 24 (1963): 88-90. Cited on 121.

[2] Arhancet, Cédric, and Stephan Fackler, and Christian Le Merdy. "Isometric di-
lations and H∞ calculus for bounded analytic semigroups and Ritt operators."
Trans. Amer. Math. Soc. 369, no. 10 (2017): 6899-6933. Cited on 122.

[3] Ball, Joseph A., and Haripada Sau. "Rational dilation of tetrablock contractions
revisited." J. Funct. Anal. 278, no. 1 (2020): 108275, 14 pp. Cited on 122.

[4] Barik, Sibaprasad, et all. "Isometric dilations and von Neumann inequality for
a class of tuples in the polydisc." Trans. Amer. Math. Soc. 372, no. 2 (2019):
1429-1450. Cited on 122.

[5] Choi, Man-Duen, and Kenneth R. Davidson. "A 3 × 3 dilation counterexample."
Bull. Lond. Math. Soc. 45, no. 3 (2013): 511-519. Cited on 121.

[6] Das, B. Krishna, and Jaydeb Sarkar. "Andô dilations, von Neumann inequality,
and distinguished varieties." J. Funct. Anal. 272, no. 5 (2017): 2114-2131. Cited
on 122.

[7] Fackler, Stephan, and Glück, Jochen. "A toolkit for constructing dilations on
Banach spaces." Proc. Lond. Math. Soc. (3) 118, no. 2, (2019): 416-440. Cited on
122.

[8] Foiaş, Ciprian, and Arthur E. Frazho. The commutant lifting approach to inter-
polation problems. Vol. 44 of Operator Theory: Advances and Applications. Basel:
Birkhäuser Verlag, 1990. Cited on 125.

[9] Keshari, Dinesh Kumar, and Nirupama Mallick. "q-commuting dilation." Proc.
Amer. Math. Soc. 147, no. 2 (2019): 655-669. Cited on 122.

[10] Müller, Vladimír. "Commutant lifting theorem for n-tuples of contractions." Acta
Sci. Math. (Szeged) 59, no. 3-4 (1994): 465-474. Cited on 124.

[11] Parrott, Stephen. "Unitary dilations for commuting contractions." Pacific J. Math.
34 (1970): 481-490. Cited on 121, 123 and 126.

[12] Paulsen, Vern. Completely bounded maps and operator algebras. Vol. 78 of Cam-
bridge Studies in Advanced Mathematics. Cambridge: Cambridge University
Press, 2002. Cited on 122.

[13] Popescu, Gelu. "Andô dilations and inequalities on noncommutative varieties."
J. Funct. Anal. 272, no. 9 (2017): 3669-3711. Cited on 122.

[14] Russo, Benjamin. "Lifting commuting 3-isometric tuples." Oper. Matrices 11, no.
2 (2017): 397-433. Cited on 122.

[15] Szőkefalvi-Nagy, Béla. "Sur les contractions de l’espace de Hilbert." Acta Sci.
Math. (Szeged) 15 (1953): 87-92. Cited on 121.

[16] Szőkefalvi-Nagy, Béla and Ciprian Foiaş. Harmonic analysis of operators on
Hilbert space. Amsterdam-London: North-Holland Publishing Co.; New York:
American Elsevier Publishing Co., Inc.; Budapest: Akadémiai Kiadó, 1970. Cited
on 121, 122, 123 and 137.

[17] Varopoulos, Nicholas Th. "On an inequality of von Neumann and an application of
the metric theory of tensor products to operators theory." J. Functional Analysis
16 (1974): 83-100. Cited on 121.



On dilation and commuting liftings of n-tuples [139]

Zbigniew Burdak
University of Agriculture Krakow
Department of Applied Mathematics
Balicka 253C
Kraków, 30-198
Poland
E-mail: rmburdak@cyf-kr.edu.pl

Wiesław Grygierzec
University of Agriculture Krakow
al. Mickiewicza 21
Kraków, 31-120
Poland
E-mail: wieslaw.grygierzec@urk.edu.pl

Received: January 22, 2020; final version: February 22, 2020;
available online: April 1, 2020.


	Introduction
	Preliminaries
	A lifting of a contraction
	Triples
	Dilation of a positive definite n-tuple

