FOLIA 340

Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica XIX (2020)

Basem Aref Frasin and Gangadharan Murugusundaramoorthy A subordination results for a class of analytic functions defined by q-differential operator

Abstract

In this paper, we derive several subordination results and integral means result for certain class of analytic functions defined by means of q differential operator. Some interesting corollaries and consequences of our results are also considered.

1. Introduction and definitions

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disc $\Delta=\{z:|z|<1\}$. Also denote by \mathcal{T} a subclass of \mathcal{A} consisting functions of the form

$$
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}, \quad a_{n} \geq 0, z \in \Delta
$$

introduced and studied by Silverman [22]. For two functions f and g given by

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad \text { and } \quad g(z)=z+\sum_{n=2}^{\infty} c_{n} z^{n}
$$

AMS (2010) Subject Classification: 30C45.
Keywords and phrases: Analytic functions, Univalent functions, Subordinating factor sequence, q-difference operator, Hadamard product (or convolution).

ISSN: 2081-545X, e-ISSN: 2300-133X.
their Hadamard product (or convolution) is defined by

$$
\begin{equation*}
(f * g)(z):=z+\sum_{n=2}^{\infty} a_{n} c_{n} z^{n} \tag{2}
\end{equation*}
$$

We briefly recall here the notion of q-operators, i.e. q-difference operator that plays vital role in the theory of hypergeometric series, quantum physics and in the operator theory. The application of q-calculus was initiated by Jackson [7] and Kanas and Răducanu 12 have used the fractional q-calculus operators in investigations of certain classes of functions which are analytic in Δ. For details on q-calculus one can refer [2, 3, 7, 12, 16, 11, 26] and also the reference cited therein. For the convenience, we provide some basic definitions and concept details of q-calculus which are used in this paper. We suppose throughout the paper that $0<q<1$.

For $0<q<1$ the Jackson's q-derivative of a function $f \in \mathcal{A}$ is, by definition, given as follows [7]

$$
D_{q} f(z)= \begin{cases}\frac{f(z)-f(q z)}{(1-q) z} & \text { for } z \neq 0 \tag{3}\\ f^{\prime}(0) & \text { for } z=0\end{cases}
$$

and

$$
D_{q}^{2} f(z)=D_{q}\left(D_{q} f(z)\right)
$$

From (3), we have

$$
D_{q} f(z)=1+\sum_{n=2}^{\infty}[n]_{q} a_{n} z^{n-1}
$$

where

$$
[n]_{q}=\frac{1-q^{n}}{1-q}
$$

is sometimes called the basic number n. Observe that if $q \rightarrow 1^{-}$, then $[n]_{q} \rightarrow n$.
For a function $h(z)=z^{n}$, we obtain $D_{q} h(z)=D_{q} z^{n}=\frac{1-q^{n}}{1-q} z^{n-1}=[n]_{q} z^{n-1}$, and as $q \rightarrow 1^{-}$we note

$$
D_{q} h(z)=q \rightarrow 1^{-} \quad\left([n]_{q} z^{n-1}\right)=n z^{n-1}=h^{\prime}(z),
$$

where h^{\prime} is the ordinary derivative. Recently, for $f \in \mathcal{A}$, Govindaraj and Sivasubramanian [11] defined and discussed the Sălăgean q-differential operator as follows

$$
\begin{aligned}
\mathcal{D}_{q}^{0} f(z) & =f(z), \\
\mathcal{D}_{q}^{1} f(z) & =z \mathcal{D}_{q} f(z) \\
\mathcal{D}_{q}^{m} f(z) & =z \mathcal{D}_{q}^{m}\left(\mathcal{D}_{q}^{m-1} f(z)\right), \\
\mathcal{D}_{q}^{m} f(z) & =z+\sum_{n=2}^{\infty}[n]_{q}^{m} a_{n} z^{n}, \quad m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, z \in \Delta .
\end{aligned}
$$

We note that if $q \rightarrow 1^{-}$,

$$
D^{m} f(z)=z+\sum_{n=2}^{\infty} n^{m} a_{n} z^{n} \quad m \in \mathbb{N}_{0}, z \in \Delta
$$

is the familiar Sălăgean derivative 21.
Now let

$$
\begin{aligned}
\mathbb{D}^{0} f(z) & =\mathcal{D}_{q}^{m} f(z) \\
\mathbb{D}_{\lambda, q}^{1, m} f(z) & =(1-\lambda) \mathcal{D}_{q}^{m} f(z)+\lambda z\left(\mathcal{D}_{q}^{m} f(z)\right)^{\prime} \\
& =z+\sum_{n=2}^{\infty}[n]_{q}^{m}[1+(n-1) \lambda] a_{n} z^{n}, \\
\mathbb{D}_{\lambda, q}^{2, m} f(z) & =(1-\lambda) \mathcal{D}_{\lambda, q}^{1, m} f(z)+\lambda z\left(\mathcal{D}_{\lambda, q}^{1, m} f(z) f(z)\right)^{\prime} \\
& =z+\sum_{n=2}^{\infty}[n]_{q}^{m}[1+(n-1) \lambda]^{2} a_{n} z^{n} .
\end{aligned}
$$

In general, we have

$$
\begin{aligned}
\mathbb{D}_{\lambda, q}^{\zeta, m} f(z) & =(1-\lambda) \mathcal{D}_{\lambda, q}^{\zeta-1, m_{j}} f(z)+\lambda z\left(\mathcal{D}_{\lambda, q}^{\zeta-1, m} f(z)\right)^{\prime} \\
& =z+\sum_{n=2}^{\infty}[n]_{q}^{m}[1+(n-1) \lambda]^{\zeta} a_{n} z^{n}, \quad \lambda>0, \zeta \in \mathbb{N}_{0}
\end{aligned}
$$

We note that when $q \rightarrow 1^{-}$, we get the differential operator

$$
\mathbb{D}_{\lambda}^{\zeta, m} f(z)=z+\sum_{n=2}^{\infty} n^{m}[1+(n-1) \lambda]^{\zeta} a_{n} z^{n} \quad \lambda>0, m, \zeta \in \mathbb{N}_{0}
$$

We observe that for $m=0$, we get the differential operator D^{ζ} defined by AlOboudi [5, and if $\zeta=0$, we get Sălăgean differential operator D^{m}, see 21.

With the help of the differential operator $\mathbb{D}_{\lambda, q}^{\zeta, m}$, we say that a function $f \in \mathcal{A}$ is said to be in the class $\mathcal{S}_{\lambda, q}^{\zeta, m}(\alpha, \beta)$ if it satisfies

$$
\Re\left(\frac{z\left(\mathbb{D}_{\lambda, q}^{\zeta, m} f(z)\right)^{\prime}}{\mathbb{D}_{\lambda, q}^{\zeta, m} f(z)}-\alpha\right)>\beta\left|\frac{z\left(\mathbb{D}_{\lambda, q}^{\zeta, m} f(z)\right)^{\prime}}{\mathbb{D}_{\lambda, q}^{\zeta, m} f(z)}-1\right|, \quad z \in \Delta
$$

where $-1 \leq \alpha<1, \beta \geq 0, \lambda>0, m, \zeta \in \mathbb{N}_{0}$.
The family $\mathcal{S}_{\lambda, q}^{\zeta, m}(\alpha, \beta)$ contains many well-known as well as many new classes of analytic univalent functions. For $\beta=0, \zeta=0$ and $m=0$ we obtain the family of starlike functions of order $\alpha(0 \leq \alpha<1)$ denoted by $\mathcal{S}^{*}(\alpha)$ and for $\beta=0, \zeta=0$ and $m=1$ we have the family of convex functions of order $\alpha(0 \leq \alpha<1)$ denoted by $\mathcal{K}(\alpha)$. For $\zeta=0$ and $m=0$ we obtain the class $\beta-\mathcal{U S T}(\alpha)$ and for $\zeta=0$ and $m=1$ we get the class $\beta-\mathcal{U} \mathcal{K} \mathcal{V}(\alpha)$. The classes $\beta-\mathcal{U S T}(\alpha)$ and $\beta-\mathcal{U K} \mathcal{V}(\alpha)$
were introduced by Rønning [19], [20]. We observe that $\beta-\mathcal{U S T}(0) \equiv \beta-\mathcal{U S T}$ the class of uniformly β-starlike functions and $\beta-\mathcal{U} \mathcal{K} \mathcal{V}(0) \equiv \beta-\mathcal{U} \mathcal{K} \mathcal{V}$ the class of uniformly β-convex functions introduced by Kanas and Wiśniowska [13], [14], see also the work of Kanas and Srivastava [15, Goodman (9), 10, Ma and Minda [18] and Gangadharan et al. [8.

Before we state and prove our main result we need the following definitions and lemmas.

Definition 1.1 (Subordination Principle)
Let g be analytic and univalent in Δ. If f is analytic in $\Delta, f(0)=g(0)$ and $f(\Delta) \subset g(\Delta)$, then the function f is subordinate to g in Δ and we write $f \prec g$.

Definition 1.2 (Subordinating Factor Sequence)
A sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ of complex numbers is called a subordinating factor sequence if, whenever f is analytic, univalent and convex in Δ, we have the subordination given by

$$
\sum_{n=2}^{\infty} b_{n} a_{n} z^{n} \prec f(z), \quad z \in \Delta, a_{1}=1 .
$$

Lemma 1.3 ([28])
The sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ is a subordinating factor sequence if and only if

$$
\Re\left(1+2 \sum_{n=1}^{\infty} b_{n} z^{n}\right)>0, \quad z \in \Delta .
$$

Lemma 1.4
Assume that

$$
\begin{equation*}
\sum_{n=2}^{\infty}[n]_{q}^{m}[1+(n-1) \lambda]^{\zeta}[n(\beta+1)-(\alpha+\beta)]\left|a_{n}\right| \leq 1-\alpha, \tag{4}
\end{equation*}
$$

then $f \in \mathcal{S}_{\lambda, q}^{\zeta, m}(\alpha, \beta)$, where $-1 \leq \alpha<1, \beta \geq 0, \lambda>0$ and $m, \zeta \in \mathbb{N}_{0}$. The result is sharp for the function

$$
f_{n}(z)=z-\frac{1-\alpha}{[n]_{q}^{m}[1+(n-1) \lambda]^{\zeta}[n(\beta+1)-(\alpha+\beta)]} z^{n} .
$$

Proof. It suffices to show that

$$
\beta\left|\frac{z\left(\mathbb{D}_{\lambda, q}^{\zeta, m} f(z)\right)^{\prime}}{\mathbb{D}_{\lambda, q}^{\zeta, m} f(z)}-1\right|-\Re\left(\frac{z\left(\mathbb{D}_{\lambda, q}^{\zeta, m} f(z)\right)^{\prime}}{\mathbb{D}_{\lambda, q}^{\zeta, m} f(z)}-1\right) \leq 1-\alpha
$$

We have

$$
\begin{aligned}
\beta\left|\frac{z\left(\mathbb{D}_{\lambda, q}^{\zeta, m} f(z)\right)^{\prime}}{\mathbb{D}_{\lambda, q}^{\zeta, m} f(z)}-1\right| & -\Re\left(\frac{z\left(\mathbb{D}_{\lambda, q}^{\zeta, m} f(z)\right)^{\prime}}{\mathbb{D}_{\lambda, q}^{\zeta, m} f(z)}-1\right) \\
& \leq(1+\beta)\left|\frac{z\left(\mathbb{D}_{\lambda}^{\zeta, m} f(z)\right)^{\prime}}{\mathbb{D}_{\lambda, q}^{\zeta, m} f(z)}-1\right| \\
& \leq \frac{(1+\beta) \sum_{n=2}^{\infty}[n]_{q}^{m}[1+(n-1) \lambda]^{\zeta}(n-1)\left|a_{n}\right||z|^{n-1}}{1-\sum_{n=2}^{\infty}[n]_{q}^{m}[1+(n-1) \lambda]^{\zeta}\left|a_{n}\right||z|^{n-1}} \\
& \leq \frac{(1+\beta) \sum_{n=2}^{\infty}[n]_{q}^{m}[1+(n-1) \lambda]^{\zeta}(n-1)\left|a_{n}\right|}{1-\sum_{n=2}^{\infty}[n]_{q}^{m}[1+(n-1) \lambda]^{\zeta}\left|a_{n}\right|} .
\end{aligned}
$$

The last expression is bounded from above by $1-\alpha$ if

$$
\sum_{n=2}^{\infty}[n]_{q}^{m}[1+(n-1) \lambda]^{\zeta}[n(\beta+1)-(\alpha+\beta)]\left|a_{n}\right|
$$

holds. It is obvious that the function f_{n} satisfies the inequality (4), and thus $1-\alpha$ cannot be replaced by a larger number. Therefore we need only to prove that $f \in \mathcal{S}_{\lambda, q}^{\zeta, m}(\alpha, \beta)$. Since

$$
\begin{aligned}
& \Re\left(\frac{1-\sum_{n=2}^{\infty}[n]_{q}^{m}[1+(n-1) \lambda]^{\zeta} n a_{n} z^{n-1}}{1-\sum_{n=2}^{\infty}[n]_{q}^{m}[1+(n-1) \lambda]^{\zeta} a_{n} z^{n-1}}-\alpha\right) \\
& \quad>\beta\left|\frac{\sum_{n=2}^{\infty}[n]_{q}^{m}[1+(n-1) \lambda]^{\zeta}(n-1) a_{n} z^{n-1}}{1-\sum_{n=2}^{\infty}[n]_{q}^{m}[1+(n-1) \lambda]^{\zeta} a_{n} z^{n-1}}\right|
\end{aligned}
$$

Letting $z \rightarrow 1$ along the real axis, we obtain the desired inequality given in (4). and the proof is complete.

Let $\mathcal{S}_{\lambda, q}^{*, \zeta, m}(\alpha, \beta)$ denote the class of functions $f \in \mathcal{A}$ whose coefficients satisfy the condition (4). We note that $\mathcal{S}_{\lambda, q}^{*, \zeta, m}(\alpha, \beta) \subseteq \mathcal{S}_{\lambda, q}^{\zeta, m}(\alpha, \beta)$.

2. Main Theorem

Employing the techniques used earlier by Srivastava and Attiya [27], Attiya [4] and Frasin [6], Singh [25] and others, we state and prove the following theorem.

Theorem 2.1

Let the function f be defined by (1) be in the class $\mathcal{S}_{\lambda, q}^{*, \zeta, m}(\alpha, \beta)$, where $-1 \leq \alpha<1$, $\beta \geq 0, \lambda>0, \zeta \in \mathbb{N}_{0}$. Also let \mathcal{K} denote the familiar class of functions $f \in \mathcal{A}$ which are also univalent and convex in Δ. Then

$$
\begin{equation*}
\frac{(1+q)^{m}(1+\lambda)^{\zeta}(\beta+2-\alpha)}{2\left[1-\alpha+(1+q)^{m}(1+\lambda)^{\zeta}(\beta+2-\alpha)\right]}(f * g)(z) \prec g(z), \quad z \in \Delta, g \in \mathcal{K}, \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re(f(z))>-\frac{1-\alpha+(1+q)^{m}(1+\lambda)^{\zeta}(\beta+2-\alpha)}{(1+q)^{m}(1+\lambda)^{\zeta}(\beta+2-\alpha)}, \quad z \in \Delta . \tag{6}
\end{equation*}
$$

The constant $\frac{(1+q)^{m}(1+\lambda)^{\varsigma}(\beta+2-\alpha)}{2\left[1-\alpha+(1+q)^{m}(1+\lambda)^{\varsigma}(\beta+2-\alpha)\right]}$ is the best estimate.
Proof. Let $f \in \mathcal{S}_{\lambda, q}^{*, \zeta, m}(\alpha, \beta)$ and let $g(z)=z+\sum_{n=2}^{\infty} c_{n} z^{n} \in \mathcal{K}$. Then

$$
\begin{aligned}
& \frac{(1+q)^{m}(1+\lambda)^{\zeta}(\beta+2-\alpha)}{2\left[1-\alpha+(1+q)^{m}(1+\lambda)^{\zeta}(\beta+2-\alpha)\right]}(f * g)(z) \\
& \quad=\frac{(1+q)^{m}(1+\lambda)^{\zeta}(\beta+2-\alpha)}{2\left[1-\alpha+(1+q)^{m}(1+\lambda)^{\zeta}(\beta+2-\alpha)\right]}\left(z+\sum_{n=2}^{\infty} a_{n} c_{n} z^{n}\right) .
\end{aligned}
$$

Thus, by Definition 1.2 , the assertion of our theorem will hold if the sequence

$$
\left(\frac{(1+q)^{m}(1+\lambda)^{\zeta}(\beta+2-\alpha)}{2\left[1-\alpha+(1+q)^{m}(1+\lambda)^{\zeta}(\beta+2-\alpha)\right]} a_{n}\right)_{n=1}^{\infty}
$$

is a subordinating factor sequence, with $a_{1}=1$. In view of Lemma 1.3 this will be the case if and only if

$$
\begin{equation*}
\Re\left(1+2 \sum_{n=1}^{\infty} \frac{(1+q)^{m}(1+\lambda)^{\zeta}(\beta+2-\alpha)}{2\left[1-\alpha+(1+q)^{m}(1+\lambda)^{\zeta}(\beta+2-\alpha)\right]} a_{n} z^{n}\right)>0, \quad z \in \Delta \tag{7}
\end{equation*}
$$

Now

$$
\begin{aligned}
& \Re(1+\left.\frac{(1+q)^{m}(1+\lambda)^{\zeta}(\beta+2-\alpha)}{1-\alpha+(1+q)^{m}(1+\lambda)^{\zeta}(\beta+2-\alpha)} \sum_{n=1}^{\infty} a_{n} z^{n}\right) \\
&= \Re\left(1+\frac{(1+q)^{m}(1+\lambda)^{\zeta}(\beta+2-\alpha)}{1-\alpha+(1+q)^{m}(1+\lambda)^{\zeta}(\beta+2-\alpha)} z\right. \\
&+\frac{1}{1-\alpha+(1+q)^{m}(1+\lambda)^{\zeta}(\beta+2-\alpha)} \\
&\left.\cdot \sum_{n=2}^{\infty}(1+q)^{m}(1+\lambda)^{\zeta}(\beta+2-\alpha) a_{n} z^{n}\right) \\
& \geq 1-\left(\frac{[2]_{q}^{m}(1+\lambda)^{\zeta}(\beta+2-\alpha)}{1-\alpha+[2]_{q}^{m}(1+\lambda)^{\zeta}(\beta+2-\alpha)} r\right.
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{1-\alpha+[2]_{q}^{m}(1+\lambda)^{\zeta}(\beta+2-\alpha)} \\
& \left.\cdot \sum_{n=2}^{\infty}[2]_{q}^{m}[1+(n-1) \lambda][n(\beta+1)-(\alpha+\beta)] a_{n} r^{n}\right) \\
> & 1-\frac{(1+q)^{m}(1+\lambda)^{\zeta}(\beta+2-\alpha)}{1-\alpha+(1+q)^{m}(1+\lambda)^{\zeta}(\beta+2-\alpha)} r \\
& -\frac{1-\alpha}{1-\alpha+(1+q)^{m}(1+\lambda)^{\zeta}(\beta+2-\alpha)} r>0, \quad|z|=r
\end{aligned}
$$

Notice that the last but one inequality follows from the fact that $[2]_{q}^{m} \sum_{n=2}^{\infty}[1+$ $(n-1) \lambda][n(\beta+1)-(\alpha+\beta)]$ is an increasing function of $n(n \geq 2))$. Thus 7 holds true in Δ. This proves the inequality (5). The inequality (6) follows by taking the convex function $g(z)=\frac{z}{1-z}=z+\sum_{n=2}^{\infty} z^{n}$ in (5).

To prove the sharpness of the constant $\frac{(1+q)^{m}(1+\lambda)^{\varsigma}(\beta+2-\alpha)}{2\left[1-\alpha+(1+q)^{m}(1+\lambda)^{\varsigma}(\beta+2-\alpha)\right]}$, we consider the function $f_{2} \in \mathcal{S}_{\lambda, q}^{*, \zeta, m}(\alpha, \beta)$ given by

$$
f_{2}(z)=z-\frac{1-\alpha}{(1+q)^{m}(1+\lambda)^{\zeta}(\beta+2-\alpha)} z^{2}
$$

where $-1 \leq \alpha<1, \beta \geq 0, \lambda>0, m, \zeta \in \mathbb{N}_{0}$. Thus from (5) we have

$$
\frac{(1+q)^{m}(1+\lambda)^{\zeta}(\beta+2-\alpha)}{2\left[1-\alpha+(1+q)^{m}(1+\lambda)^{\zeta}(\beta+2-\alpha)\right]} f_{2}(z) \prec \frac{z}{1-z}
$$

It can be easily verified that

$$
\min \left\{\Re\left(\frac{(1+q)^{m}(1+\lambda)^{\zeta}(\beta+2-\alpha)}{2\left[1-\alpha+(1+q)^{m}(1+\lambda)^{\zeta}(\beta+2-\alpha)\right]} f_{2}(z)\right)\right\}=-\frac{1}{2}, \quad z \in \Delta
$$

This shows that the constant $\frac{(1+q)^{m}(1+\lambda)^{\varsigma}(\beta+2-\alpha)}{2\left[1-\alpha+(1+q)^{m}(1+\lambda)^{\varsigma}(\beta+2-\alpha)\right]}$ is the best possible.
Putting $m=0$ in Theorem 2.1 yields the following result obtained by Aouf et al. [1].

Corollary 2.2
Let f, defined by (11, be in the class $\mathcal{M}_{\lambda}^{*}(\zeta, \alpha, \beta)$, where $-1 \leq \alpha<1, \beta \geq 0$, $\lambda>0, \zeta \in \mathbb{N}_{0}$. Then

$$
\frac{(1+\lambda)^{\zeta}(\beta+2-\alpha)}{2\left[1-\alpha+(1+\lambda)^{\zeta}(\beta+2-\alpha)\right]}(f * g)(z) \prec g(z) \quad z \in \Delta, g \in \mathcal{K}
$$

and

$$
\Re(f(z))>-\frac{1-\alpha+(1+\lambda)^{\zeta}(\beta+2-\alpha)}{(1+\lambda)^{\zeta}(\beta+2-\alpha)}, \quad z \in \Delta .
$$

The constant $\frac{(1+\lambda)^{\varsigma}(\beta+2-\alpha)}{2\left[1-\alpha+(1+\lambda)^{\varsigma}(\beta+2-\alpha)\right]}$ is the best estimate.

If we put $m=0$ and $\zeta=0$ in Theorem 2.1 we obtain the next two results obtained by Frasin [6].

Corollary 2.3
Let f, defined by (11), be in the class $\beta-\mathcal{U S T}(\alpha)$. Then

$$
\frac{\beta+2-\alpha}{2(\beta+3-2 \alpha)}(f * g)(z) \prec g(z), \quad-1 \leq \alpha<1, \beta \geq 0, z \in \Delta, g \in \mathcal{K}
$$

and

$$
\Re(f(z))>-\frac{\beta+3-2 \alpha}{\beta+2-\alpha}, \quad z \in \Delta .
$$

The constant $\frac{\beta+2-\alpha}{2(\beta+3-2 \alpha)}$ is the best estimate.
Corollary 2.4
Let f, defined by (11), be in the class $\beta-\mathcal{U K} \mathcal{V}(\alpha)$. Then

$$
\frac{\beta+2-\alpha}{2 \beta+5-3 \alpha}(f * g)(z) \prec g(z), \quad-1 \leq \alpha<1, \beta \geq 0, z \in \Delta, g \in \mathcal{K}
$$

and

$$
\Re(f(z))>-\frac{2 \beta+5-3 \alpha}{2(\beta+2-\alpha)}, \quad z \in \Delta .
$$

The constant $\frac{\beta+2-\alpha}{2 \beta+5-3 \alpha}$ is the best estimate.
Putting $m=0, \zeta=0$ and $\beta=0$ in Theorem 2.1 we obtain the next two results obtained by Frasin [6].

Corollary 2.5
Let f, defined by (11, be in the class $\mathcal{S}^{*}(\alpha)$. Then

$$
\frac{2-\alpha}{6-4 \alpha}(f * g)(z) \prec g(z), \quad z \in \Delta, g \in \mathcal{K}
$$

and

$$
\Re(f(z))>-\frac{3-2 \alpha}{2-\alpha}, \quad z \in \Delta .
$$

The constant $\frac{2-\alpha}{6-4 \alpha}$ is the best estimate.
Corollary 2.6
Let f, defined by (1), be in the class $\mathcal{K}(\alpha)$. Then

$$
\frac{2-\alpha}{5-3 \alpha}(f * g)(z) \prec g(z,) \quad z \in \Delta, g \in \mathcal{K}
$$

and

$$
\Re(f(z))>-\frac{5-3 \alpha}{2(2-\alpha)}, \quad z \in \Delta .
$$

The constant $\frac{2-\alpha}{5-3 \alpha}$ is the best estimate.

3. Integral Means Inequalities

Lemma 3.1 ([17])
If the functions f and g are analytic in Δ with $g \prec f$, then for $\eta>0$, and $0<r<1$,

$$
\int_{0}^{2 \pi}\left|g\left(r e^{i \theta}\right)\right|^{\eta} d \theta \leq \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\eta} d \theta
$$

In [22], Silverman found that the function $f_{2}(z)=z-\frac{z^{2}}{2}$ is often extremal over the family \mathcal{T} and applied this function to resolve his integral means inequality, conjectured in [23] and settled in [24], that

$$
\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\eta} d \theta \leq \int_{0}^{2 \pi}\left|f_{2}\left(r e^{i \theta}\right)\right|^{\eta} d \theta
$$

for all $f \in \mathcal{T}, \eta>0$ and $0<r<1$. In [24], Silverman also proved his conjecture for the subclasses $\mathcal{T}^{*}(\alpha)$ and $\mathcal{K}(\alpha)$ of \mathcal{T}.

Applying Lemma 3.1 and Lemma 1.4 , we prove the following result.
Theorem 3.2
Suppose $f \in \mathcal{S}_{\lambda, q}^{\zeta, m}(\alpha, \beta), \eta>0$, and f_{2} is defined by

$$
f_{2}(z)=z-\frac{1-\alpha}{(1+q)^{m}[1+\lambda]^{\zeta}[\beta+2-\alpha]} z^{2}
$$

Then for $z=r e^{i \theta}, 0<r<1$ we have

$$
\begin{equation*}
\int_{0}^{2 \pi}|f(z)|^{\eta} d \theta \leq \int_{0}^{2 \pi}\left|f_{2}(z)\right|^{\eta} d \theta \tag{8}
\end{equation*}
$$

Proof. Observe that for $f(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n}$ inequality (8) is equivalent to

$$
\int_{0}^{2 \pi}\left|1-\sum_{n=2}^{\infty}\right| a_{n}\left|z^{n-1}\right|^{\eta} d \theta \leq \int_{0}^{2 \pi}\left|1-\frac{1-\alpha}{[2]_{q}^{m}[1+\lambda]^{\zeta}[\beta+2-\alpha]} z\right|^{\eta} d \theta
$$

By Lemma 3.1 it suffices to show that

$$
1-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n-1} \prec 1-\frac{1-\alpha}{[2]_{q}^{m}[1+\lambda]^{\zeta}[\beta+2-\alpha]} z .
$$

Setting

$$
1-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n-1}=1-\frac{1-\alpha}{[2]_{q}^{m}[1+\lambda]^{\zeta}[\beta+2-\alpha]} w(z)
$$

and using (4), we obtain that $w(z)$ is analytic in $\Delta, w(0)=0$ and

$$
\begin{aligned}
|w(z)| & =\left|\sum_{n=2}^{\infty} \frac{[2]_{q}^{m}[1+\lambda]^{\zeta}[\beta+2-\alpha]}{1-\alpha}\right| a_{n}\left|z^{n-1}\right| \\
& \leq|z| \sum_{n=2}^{\infty} \frac{[n]_{q}^{m}[1+(n-1) \lambda]^{\zeta}[n(\beta+1)-(\alpha+\beta)]}{1-\alpha}\left|a_{n}\right| \leq|z|
\end{aligned}
$$

This completes the proof of Theorem 3.2

Acknowledgement. We record our sincere thanks to the referees for their valuable suggestions to improve the paper in present form.

References

[1] Aouf, Mohamed Kamal et al. " β-uniformly convex and starlike functions." Proc. Pakistan Acad. Sci. 46, no. 2 (2009): 97-101. Cited on 59.
[2] Araci, Serkan et al. "A certain (p, q)-derivative operator and associated divided differences." J. Inequal. Appl. 2019 (2019): Paper No. 301. Cited on 54.
[3] Aral, Ali, Vijay Gupta, and Ravi P. Agarwal. Applications of q-calculus in operator theory. New York: Springer, 2013. Cited on 54
[4] Attiya, Adel A. "On some applications of a subordination theorem." J. Math. Anal. Appl. 311, no. 2 (2005): 489-494. Cited on 57
[5] Al-Oboudi, Fatima M. "On univalent functions defined by a generalized Sălăgean operator." Int. J. Math. Math. Sci. no. 25-28 (2004): 1429-1436. Cited on 55
[6] Frasin, Basem Aref. "Subordination results for a class of analytic functions defined by a linear operator." JIPAM. J. Inequal. Pure Appl. Math. 7 (2006): Article 4. Cited on 57 and 60
[7] Jackson, Frederick H., "On q-functions and a certain difference operator." Trans. Royal Soc. Edinb. 46 (1908): 253-281. Cited on 54
[8] Gangadharan, A., Tirunelveli Nellaiappan Shanmugam, and Hari Mohan Srivastava. "Generalized hypergeometric functions associated with k-uniformly convex functions." Comput. Math. Appl. 44, no. 12 (2002): 1515-1526. Cited on 56.
[9] Goodman, Adolph W. "On uniformly convex functions." Ann. Polon. Math. 56, no. 1 (1991): 87-92. Cited on 56
[10] Goodman, Adolph W. "On uniformly starlike functions." J. Math. Anal. Appl. 155, no. 2 (1991): 364-370. Cited on 56
[11] Govindaraj, M., and Srikandan Sivasubramanian. "On a class of analytic functions related to conic domains involving q-calculus." Anal. Math. 43, no. 3 (2017): 475487. Cited on 54
[12] Kanas, Stanisława R. and Dorina Răducanu. "Some class of analytic functions related to conic domains." Math. Slovaca 64, no. 5 (2014): 1183-1196. Cited on 54
[13] Kanas, Stanisława R., and Agnieszka Wiśniowska. "Conic regions and k-uniform convexity." J. Comput. Appl. Math. 105, no. 1-2 (1999): 327-336. Cited on 56
[14] Kanas, Stanisława R., and Agnieszka Wiśniowska. "Conic domains and starlike functions." Rev. Roumaine Math. Pures Appl. 45, no. 4 (2000): 647-657. Cited on 56
[15] Kanas, Stanisława R., and Hari Mohan Srivastava. "Linear operators associated with k-uniformly convex functions." Integral Transform. Spec. Funct. 9, no. 2 (2000): 121-132. Cited on 56
[16] Karahuseyin, Zeliha, Şahsene Altinkaya, and Sibel Yalçin. "On $H_{3}(1)$ Hankel determinant for univalent functions defined by using q-derivative operator." TJMM 9, no. 1 (2017): 25-33. Cited on 54
[17] Littlewood, John Edensor. "On Inequalities in the Theory of Functions." Proc. London Math. Soc. 23, no. 7 (2): 481-519. Cited on 61.
[18] Ma, Wan Cang, and David Minda. "Uniformly convex functions." Ann. Polon. Math. 57, no. 2 (1992): 165-175. Cited on 56
[19] Rønning, Frode. "Uniformly convex functions and a corresponding class of starlike functions." Proc. Amer. Math. Soc. 118, no. 1 (1993): 189-196. Cited on 56
[20] Rønning, Frode. "On starlike functions associated with parabolic regions." Ann. Univ. Mariae Curie-Sklodowska Sect. A 45, no. 1991 (1992): 117-122. Cited on 56
[21] Sălăgean, Grigore Stefan. "Subclasses of univalent functions." Complex Analysis: Fifth Romanian- Finnish Seminar, Part I(Bucharest, 1981) Vol. 1013 of Lecture Notes in Mathematics, 362-372. Berlin, New York: Springer-Verlag, 1983. Cited on 55.
[22] Silverman, Herb. "Univalent functions with negative coefficients." Proc. Amer. Math. Soc. 51 (1975): 109-116. Cited on 53 and 61.
[23] Silverman, Herb. "A survey with open problems on univalent functions whose coefficients are negative." Rocky Mountain J. Math. 21, no. 3 (1991): 1099-1125. Cited on 61
[24] Silverman, Herb. "Integral means for univalent functions with negative coefficients." Houston J. Math. 23, no. 1 (1997): 169-174. Cited on 61
[25] Singh, Sukhjit. "A subordination theorem for spirallike functions." Int. J. Math. Math. Sci. 24, no. 7 (2000): 433-435. Cited on 57
[26] Srivastava, Hari Mohan. "Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials." Appl. Math. Inf. Sci. 5, no. 3 (2011): 390-444. Cited on 54
[27] Srivastava, Hari Mohan, and Adel A. Attiya. "Some subordination results associated with certain subclasses of analytic functions." JIPAM. J. Inequal. Pure Appl. Math. 5, no. 4 (2004): 6pp. Cited on 57
[28] Wilf, Herbert Saul. "Subordinating factor sequences for convex maps of the unit circle." Proc. Amer. Math. Soc. 12 (1961): 689-693. Cited on 56

Basem Aref Frasin
Department of Mathematics
Al al-Bayt University
P.O. Box: 130095 Mafraq
Jordan
E-mail: bafrasin@yahoo.com

Gangadharan Murugusundaramoorthy
Department of Mathematics
School of Advanced Sciences
Vellore Institute of Technology (Deemed to be University) Vellore - 632014
India
E-mail: gmsmoorthy@yahoo.com

Received: January 19, 2019; final version: August 23, 2019;
available online: January 14, 2020.

