ArticleOriginal scientific text

Title

On the Chow ring of certain Fano fourfolds

Authors 1

Affiliations

  1. Institut de Recherche Mathématique Avancée CNRS – Université de Strasbourg 7 Rue René Descartes 67084 Strasbourg CEDEX

Abstract

We prove that certain Fano fourfolds of K3 type constructed by Fatighenti–Mongardi have a multiplicative Chow–Künneth decomposition. We present some consequences for the Chow ring of these fourfolds.

Keywords

Algebraic cycles, Chow ring, motives, Beauville “splitting property”, Fano variety, K3 surface

Bibliography

  1. Beauville, Arnaud. "On the splitting of the Bloch-Beilinson filtration. In Algebraic cycles and motives. Vol. 2." , Vol. 344 of London Math. Soc. Lecture Note Ser. Cambridge: Cambridge Univ. Press, 2007.
  2. Beauville, Arnaud, and Claire Voisin "On the Chow ring of a K3 surface." J. Algebraic Geom. 13, no. 3 (2004): 417-426.
  3. Deligne, Pierre. "Théorème de Lefschetz et critères de dégénérescence de suites spectrales." Inst. Hautes Études Sci. Publ. Math. 35 (1968): 259-278.
  4. Deninger, Christopher, and Jacob Murre. "Motivic decomposition of abelian schemes and the Fourier transform." J. Reine Angew. Math. 422 (1991): 201-219.
  5. Fatighenti, Enrico, and Giovanni Mongardi. "Fano varieties of K3 type and IHS manifolds." arXiv (2019): 1904.05679.
  6. Fu, Lie, Robert Laterveer, and Charles Vial. "The generalized Franchetta conjecture for some hyper-Kähler varieties." J. Math. Pures Appl. (9) 130 (2019): 1-35.
  7. Fu, Lie, Zhiyu Tian, and Charles Vial. "Motivic hyper-Kähler resolution conjecture, I: generalized Kummer varieties." Geom. Topol. 23, no. 1 (2019): 427-492.
  8. Fu, Lie, and Charles Vial. "Distinguished cycles on varieties with motive of abelian type and the Section Property", arXiv (2017): 1709.05644v2.
  9. Laterveer, Robert. "Algebraic cycles on some special hyperkähler varieties." Rend. Mat. Appl. (7) 38, no. 2 (2017): 243-276. Cited on 49.
  10. Laterveer, Robert. "A remark on the Chow ring of Küchle fourfolds of type d3." Bull. Aust. Math. Soc. 100, no. 3 (2019): 410-418.
  11. Laterveer, Robert. "Algebraic cycles and Verra fourfolds." Tohoku Math. J. (to appear)
  12. Laterveer, Robert. "On the Chow ring of Fano varieties of type S2." preprint.
  13. Laterveer, Robert and Charles Vial. "On the Chow ring of Cynk–Hulek Calabi–Yau varieties and Schreieder varieties." Canadian Journal of Math. DOI: 10.4153/S0008414X19000191.
  14. Murre, Jacob P. "On a conjectural filtration on the Chow groups of an algebraic variety I and II. Indag. Math. (N.S.) 4, no. 2 (1993): 177-201.
  15. Murre, Jacob P., Jan Nagel, and Chris A.M. Peters. Lectures on the theory of pure motives. Providence, RI: American Mathematical Society, 2013.
  16. Pavic, Nebojsa, Junliang Shen, and Qizheng Yin. "On O’Grady’s generalized Franchetta conjecture." Int. Math. Res. Not. IMRN 2017, no. 16 (2017): 4971-4983.
  17. Scholl, Anthony J. "Classical motives." In Vol. 55 of Proc. Sympos. Pure Math., 163–187. Providence, RI: Amer. Math. Soc., 1994.
  18. Shen, Mingmin, and Charles Vial. "The Fourier transform for certain hyperkähler fourfolds." Mem. Amer. Math. Soc. 240 (2016): no. 1139.
  19. Shen, Mingmin, and Charles Vial. "The motive of the Hilbert cube X[3]." Forum Math. Sigma 4 (2016): e30.
  20. Vial, Charles. "On the motive of some hyperKähler varieties." J. Reine Angew. Math. 725 (2017): 235-247.
  21. Voisin, Claire. "Chow rings and decomposition theorems for families of K3 surfaces and Calabi-Yau hypersurfaces." Geom. Topol. 16, no. 1 (2012): 433-473.
  22. Voisin, Claire. Chow rings, decomposition of the diagonal, and the topology of families. Vol. 187 of Annals of Mathematics Studies. Princeton, NJ: Princeton University Press, 2014.
Pages:
39-52
Main language of publication
English
Published
2020-01-13