Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 19 | 27-33

Tytuł artykułu

Jensen-type geometric shapes

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
We present both necessary and sufficient conditions for a convex closed shape such that for every convex function the average integral over the shape does not exceed the average integral over its boundary. It is proved that this inequality holds for n-dimensional parallelotopes, n-dimensional balls, and convex polytopes having the inscribed sphere (tangent to all its facets) with the centre in the centre of mass of its boundary.

Rocznik

Tom

19

Strony

27-33

Daty

wydano
2020-01-01

Twórcy

  • Institute of Mathematics, Pedagogical University of Kraków, Podchorążych str. 2, 30-084 Kraków

Bibliografia

  • de la Cal, Jesús and Javier Cárcamo. "Multidimensional Hermite-Hadamard inequalities and the convex order." J. Math. Anal. Appl. 324, no. 1 (2006): 248-261.
  • de la Cal, Jesús, Javier Cárcamo and Luis Escauriaza. "A general multidimensional Hermite-Hadamard type inequality." J. Math. Anal. Appl. 356, no. 2 (2009): 659-663.
  • Cover, Thomas M. and Joy A. Thomas. Elements of Information Theory 2nd ed. New York: Wiley-Interscience, 2006.
  • Dragomir, Sever Silvestru and Charles E. M. Pearce. Selected Topics on Hermite-Hadamard Inequalities. Victoria University: RGMIA Monographs, 2000.
  • Niculescu, Constantin P. "The Hermite-Hadamard inequality for convex functions of a vector variable." Math. Inequal. Appl. 5, no. 4 (2002): 619–623.
  • Niculescu, Constantin P. and Lars-Erik Persson. Convex Functions and their Applications. A Contemporary Approach, 2nd Ed. Vol. 23 of CMS Books in Mathematics. New York: Springer-Verlag, 2018.

Identyfikator YADDA

bwmeta1.element.ojs-issn-2300-133X-year-2020-volume-19-article-7120