FOLIA 277

Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica XVIII (2019)

Ahmet Karakas
 A new application of almost increasing sequences

Abstract

In this paper, a known result dealing with $\left|\bar{N}, p_{n}\right|_{k}$ summability of infinite series has been generalized to the $\varphi-\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability of infinite series by using an almost increasing sequence.

1. Introduction

A positive sequence $\left(b_{n}\right)$ is said to be almost increasing if there exists a positive increasing sequence $\left(c_{n}\right)$ and two positive constants L and M such that

$$
L c_{n} \leq b_{n} \leq M c_{n}
$$

(see [1]). Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, i \geq 1\right)
$$

The sequence-to-sequence transformation

$$
w_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v}
$$

defines the sequence $\left(w_{n}\right)$ of the $\left(\bar{N}, p_{n}\right)$ means of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see [8]).

[^0]The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (see [2]),

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|w_{n}-w_{n-1}\right|^{k}<\infty
$$

Let $\left(\varphi_{n}\right)$ be any sequence of positive real numbers. The series $\sum a_{n}$ is said to be summable $\varphi-\left|\bar{N}, p_{n} ; \delta\right|_{k}, k \geq 1$ and $\delta \geq 0$, if (see [14]),

$$
\sum_{n=1}^{\infty} \varphi_{n}^{\delta k+k-1}\left|w_{n}-w_{n-1}\right|^{k}<\infty
$$

If we take $\varphi_{n}=\frac{P_{n}}{p_{n}}$, then $\varphi-\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability is the same as $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability (see [3]). Also, if we take $\varphi_{n}=\frac{P_{n}}{p_{n}}$ and $\delta=0$, then we get $\left|\bar{N}, p_{n}\right|_{k}$ summability.

2. The known result

The following theorem is known dealing with $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series.

Theorem 2.1 ([6])
Let $\left(X_{n}\right)$ be an almost increasing sequence and let there be sequences $\left(\lambda_{n}\right)$ and $\left(\beta_{n}\right)$ such that

$$
\begin{gather*}
\left|\Delta \lambda_{n}\right| \leq \beta_{n}, \tag{1}\\
\beta_{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty, \tag{2}\\
\sum_{n=1}^{\infty} n\left|\Delta \beta_{n}\right| X_{n}<\infty, \tag{3}\\
\left|\lambda_{n}\right| X_{n}=O(1) \quad \text { as } \quad n \rightarrow \infty . \tag{4}
\end{gather*}
$$

If

$$
\begin{align*}
& \sum_{n=1}^{m} \frac{1}{n}\left|\lambda_{n}\right|=O(1) \quad \text { as } \quad m \rightarrow \infty \tag{5}\\
& \sum_{n=1}^{m} \frac{1}{n}\left|t_{n}\right|^{k}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{6}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{p_{n}}{P_{n}}\left|t_{n}\right|^{k}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{7}
\end{equation*}
$$

where $\left(t_{n}\right)$ is the n-th $(C, 1)$ mean of the sequence $\left(n a_{n}\right)$, then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.

3. The main result

Some works dealing with generalized absolute summability methods of infinite series have been done (see [4, 5, 7, 9, 10, 11, 12, 13, 15, 16, 17]). The aim of this paper is to generalize Theorem 2.1 to $\varphi-\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability, in the following form.

Theorem 3.1
Let $\left(X_{n}\right)$ be an almost increasing sequence and let $\left(\varphi_{n}\right)$ be a sequence of positive real numbers such that

$$
\begin{align*}
\varphi_{n} p_{n} & =O\left(P_{n}\right) \tag{8}\\
\sum_{n=v+1}^{m+1} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}} & =O\left(\varphi_{v}^{\delta k} \frac{1}{P_{v}}\right) \quad \text { as } \quad m \rightarrow \infty \tag{9}
\end{align*}
$$

If conditions (1)-(5) of the Theorem 2.1 and

$$
\begin{align*}
\sum_{n=1}^{m} \varphi_{n}^{\delta k} \frac{\left|t_{n}\right|^{k}}{n} & =O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{10}\\
\sum_{n=1}^{m} \varphi_{n}^{\delta k-1}\left|t_{n}\right|^{k} & =O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{11}
\end{align*}
$$

are satisfied, then the series $\sum a_{n} \lambda_{n}$ is summable $\varphi-\left|\bar{N}, p_{n} ; \delta\right|_{k}, k \geq 1$ and $0 \leq \delta k<1$.

We need the following lemma for the proof of Theorem 3.1 .
LEmma 3.2 (6)
Under the conditions on $\left(X_{n}\right),\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ as taken in the statement of the theorem, we have that

$$
\begin{gather*}
n X_{n} \beta_{n}=O(1) \quad \text { as } \quad n \rightarrow \infty \tag{12}\\
\sum_{n=1}^{\infty} \beta_{n} X_{n}<\infty \tag{13}
\end{gather*}
$$

Proof of Theorem 3.1. Let $\left(J_{n}\right)$ indicate $\left(\bar{N}, p_{n}\right)$ means of the series $\sum a_{n} \lambda_{n}$. Then, for $n \geq 1$, we obtain

$$
\begin{aligned}
\bar{\Delta} J_{n} & =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v} \lambda_{v} \\
& =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} \frac{P_{v-1} \lambda_{v}}{v} v a_{v} .
\end{aligned}
$$

Applying Abel's formula, we get

$$
\begin{aligned}
\bar{\Delta} J_{n}= & \frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} \frac{\lambda_{v+1}}{v} P_{v} t_{v}-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} \frac{v+1}{v} p_{v} \lambda_{v} t_{v} \\
& +\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} \frac{v+1}{v} P_{v} t_{v} \Delta \lambda_{v}+\frac{n+1}{n P_{n}} p_{n} \lambda_{n} t_{n} \\
= & J_{n, 1}+J_{n, 2}+J_{n, 3}+J_{n, 4}
\end{aligned}
$$

For the proof of Theorem 3.1 it is sufficient to show that

$$
\sum_{n=1}^{\infty} \varphi_{n}^{\delta k+k-1}\left|J_{n, r}\right|^{k}<\infty \quad \text { for } r=1,2,3,4
$$

By using Hölder's inequality and Abel's formula, we have

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left|J_{n, 1}\right|^{k}= O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left(\frac{p_{n}}{P_{n} P_{n-1}}\right)^{k}\left(\sum_{v=1}^{n-1} P_{v}\left|t_{v}\right| \frac{\left|\lambda_{v+1}\right|}{v}\right)^{k} \\
&= O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}^{k}}\left(\sum_{v=1}^{n-1} P_{v}\left|t_{v}\right| \frac{\left|\lambda_{v+1}\right|}{v}\right)^{k} \\
&= O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}}\left(\sum_{v=1}^{n-1} P_{v}\left|t_{v}\right|^{k} \frac{\left|\lambda_{v+1}\right|}{v}\right) \\
& \times\left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v} \frac{\left|\lambda_{v+1}\right|}{v}\right)^{k-1} \\
&= O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v}\left|t_{v}\right|^{k} \frac{\left|\lambda_{v+1}\right|}{v} \\
&= O(1) \sum_{v=1}^{m} P_{v}\left|\lambda_{v+1}\right| \frac{\left|t_{v}\right|^{k}}{v} \sum_{n=v+1}^{m+1} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}} \\
&= O(1) \sum_{v=1}^{m} \varphi_{v}^{\delta k}\left|\lambda_{v+1}\right|^{\left|t_{v}\right|^{k}} \\
& v \\
&= O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v+1}\right| \sum_{r=1}^{v} \varphi_{r}^{\delta k} \frac{\left|t_{r}\right|^{k}}{r}+O(1)\left|\lambda_{m+1}\right| \sum_{v=1}^{m} \varphi_{v}^{\delta k} \frac{\left|t_{v}\right|^{k}}{v} \\
&= O(1) \sum_{v=1}^{m-1} \beta_{v+1} X_{v+1}+O(1)\left|\lambda_{m+1}\right| X_{m+1} \\
&= O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of (1), (4), (5), (8)- (10) and 13$)$.

Again, using Hölder's inequality and Abel's formula, we obtain

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left|J_{n, 2}\right|^{k}= O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left(\frac{p_{n}}{P_{n} P_{n-1}}\right)^{k}\left(\sum_{v=1}^{n-1} p_{v}\left|\lambda_{v}\right|\left|t_{v}\right|\right)^{k} \\
&= O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}^{k}}\left(\sum_{v=1}^{n-1} p_{v}\left|\lambda_{v}\right|\left|t_{v}\right|\right)^{k} \\
&= O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}}\left(\sum_{v=1}^{n-1} p_{v}\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\right) \\
& \times\left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right)^{k-1} \\
&= O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k} \\
&= O(1) \sum_{v=1}^{m} p_{v}\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}} \\
&= O(1) \sum_{v=1}^{m} \varphi_{v}^{\delta k} \frac{p_{v}}{P_{v}}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} \\
&= O(1) \sum_{v=1}^{m} \varphi_{v}^{\delta k-1}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} \\
&= O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v}\right| \sum_{r=1}^{v} \varphi_{r}^{\delta k-1}\left|t_{r}\right|^{k}+O(1)\left|\lambda_{m}\right| \sum_{v=1}^{m} \varphi_{v}^{\delta k-1}\left|t_{v}\right|^{k} \\
&= O(1) \sum_{v=1}^{m-1} \beta_{v} X_{v}+O(1)\left|\lambda_{m}\right| X_{m} \\
&= O(1) a^{m} m \rightarrow \infty \\
& m
\end{aligned}
$$

in view of (1), (4), (8), (9), (11) and (13). Also, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left|J_{n, 3}\right|^{k}= & O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left(\frac{p_{n}}{P_{n} P_{n-1}}\right)^{k}\left(\sum_{v=1}^{n-1} P_{v}\left|t_{v}\right|\left|\Delta \lambda_{v}\right|\right)^{k} \\
= & O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}^{k}}\left(\sum_{v=1}^{n-1} P_{v}\left|t_{v}\right| \beta_{v}\right)^{k} \\
= & O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}}\left(\sum_{v=1}^{n-1} P_{v}\left|t_{v}\right|^{k} \beta_{v}\right) \\
& \times\left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v} \beta_{v}\right)^{k-1}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v} \beta_{v}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m} P_{v} \beta_{v}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1} \varphi_{n}^{\delta k-1} \frac{1}{P_{n-1}} \\
& =O(1) \sum_{v=1}^{m} \varphi_{v}^{\delta k} \frac{\left|t_{v}\right|^{k}}{v} v \beta v \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) \sum_{r=1}^{v} \varphi_{r}^{\delta k} \frac{\left|t_{r}\right|^{k}}{r}+O(1) m \beta_{m} \sum_{v=1}^{m} \varphi_{v}^{\delta k} \frac{\left|t_{v}\right|^{k}}{v} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta \beta_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} \beta_{v+1} X_{v+1}+O(1) m \beta_{m} X_{m} \\
& =O(1) \text { as } m \rightarrow \infty .
\end{aligned}
$$

by means of (1), (3), (8)-(10), 12) and (13). Finally, as in $J_{n, 2}$, we have

$$
\begin{aligned}
\sum_{n=1}^{m} \varphi_{n}^{\delta k+k-1}\left|J_{n, 4}\right|^{k} & =O(1) \sum_{n=1}^{m} \varphi_{n}^{\delta k+k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right|\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} \varphi_{n}^{\delta k-1}\left|\lambda_{n}\right|\left|t_{n}\right|^{k} \\
& =O(1) \text { as } \quad m \rightarrow \infty,
\end{aligned}
$$

in view of (11), (4), (8), (11) and (13). Thus the proof of Theorem 3.1 is completed.

4. Conclusion

If we take $\varphi_{n}=\frac{P_{n}}{p_{n}}$ and $\delta=0$ in Theorem 3.1, then we get Theorem 2.1. In this case, conditions 10 and (11) reduce to conditions (6) and (7), respectively. Also, the condition (8) is automatically satisfied.

References

[1] Bari, N.K. and S.B. Stečkin. "Best approximations and differential properties of two conjugate functions." Trudy Moskov. Mat. Obšč. 5 (1956): 483-522. Cited on 59
[2] Bor, Hüseyin. "On two summability methods." Math. Proc. Cambridge Philos. Soc. 97, no. 1 (1985): 147-149. Cited on 60
[3] Bor, Hüseyin. "On local property of $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability of factored Fourier series." J. Math. Anal. Appl. 179, no. 2 (1993): 646-649. Cited on 60.
[4] Bor, Hüseyin and Hikmet Seyhan. "On almost increasing sequences and its applications." Indian J. Pure Appl. Math. 30, no. 10 (1999): 1041-1046. Cited on 61
[5] Bor, Hüseyin, and Hikmet S. Özarslan. "On absolute Riesz summability factors." J. Math. Anal. Appl. 246, no. 2 (2000): 657-663. Cited on 61
[6] Bor, Hüseyin. "On absolute Riesz summability factors." Adv. Stud. Contemp. Math. (Pusan) 3, no. 2 (2001): 23-29. Cited on 60 and 61
[7] Bor, Hüseyin, and Hikmet S. Özarslan. "A note on absolute summability factors." Adv. Stud. Contemp. Math. (Kyungshang) 6, no. 1 (2003): 1-11. Cited on 61
[8] Hardy, Godfrey Harold. Divergent Series. Oxford: Oxford University Press, 1949. Cited on 59
[9] Karakaş, Ahmet. "A note on absolute summability method involving almost increasing and δ-quasi-monotone sequences." Int. J. Math. Comput. Sci. 13, no. 1 (2018): 73-81. Cited on 61
[10] Kartal, Bağdagül. "On generalized absolute Riesz summability method." Commun. Math. Appl. 8, no. 3 (2017): 359-364. Cited on 61.
[11] Özarslan, Hikmet S. "On almost increasing sequences and its applications." Int. J. Math. Math. Sci. 25, no. 5 (2001): 293-298. Cited on 61
[12] Özarslan, Hikmet S. "A note on $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability factors." Indian J. Pure Appl. Math. 33, no. 3 (2002): 361-366. Cited on 61
[13] Özarslan, Hikmet S. "On $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability factors." Kyungpook Math. J. 43, no. 1 (2003): 107-112. Cited on 61
[14] Seyhan, Hikmet. "On the local property of $\varphi-\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability of factored Fourier series." Bull. Inst. Math. Acad. Sinica 25, no. 4 (1997): 311-316. Cited on 60.
[15] Seyhan, Hikmet, and Abdulcabbar Sönmez, "On $\varphi-\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability factors." Portugal. Math. 54, no. 4 (1997): 393-398. Cited on 61
[16] Seyhan, Hikmet. "A note on absolute summability factors." Far East J. Math. Sci. 6, no. 1 (1998): 157-162. Cited on 61.
[17] Seyhan, Hikmet. "On the absolute summability factors of type (A,B)." Tamkang J. Math. 30, no. 1 (1999): 59-62. Cited on 61

Department of Mathematics
Erciyes University
38039 Kayseri
Turkey
E-mail: ahmetkarakas1985@hotmail.com

Received: November 20, 2018; final version: April 2, 2019;
available online: April 19, 2019.

[^0]: AMS (2010) Subject Classification: 26D15, 40D15, 40F05, 40G99.
 Keywords and phrases: summability factors, almost increasing sequence, infinite series, Hölder inequality, Minkowski inequality.

