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Abstract. In this article, we define multi-invertible, multivalued maps. These
mappings are a natural generalization of r-maps (in particular, the singleval-
ued invertible maps). They have many interesting properties and applica-
tions. In this article, the multi-invertible maps are applied to the construc-
tion of morphisms and to the theory of coincidence.

1. Introduction

In mathematical literature multivalued admissible maps are known (see [4]).
In [8] we defined multivalued locally admissible maps that are an essentially wider
class of maps than admissible maps. In this article we define multivalued, multi-
invertible maps in the context of locally admissible maps. These maps are a nat-
ural, essential generalization of r-maps (see [1]) in particular, the singlevalued
invertible maps. The generalized Vietoris maps considered in the article (see [9])
are particularly multi-invertible. Multi-invertible maps have a lot of interesting
properties. The composition of multi-invertible maps is multi-invertible. If a map
is multi-invertible then there exists exactly one multi-inverse map. Multi-invertible
maps have many applications. In this article they are applied to the construction
of morphisms and to the theory of coincidence. The property of coincidence of
multi-invertible maps can be applied to solving differential inclusions (see [3]). It
is worth mentioning that multi-invertible maps can be also applied to the theory
of multi-domination (see [9, 10]).
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2. Preliminaries

Throughout this paper all spaces are assumed to be Hausdorff topological
spaces. A continuous mapping f : X → Y is called perfect if for each y ∈ Y the
set f−1(y) is non-empty and compact and f is a closed map. Let X and Y be two
spaces and assume that for every x ∈ X a non-empty subset ϕ(x) of Y is given.
In such a case we say that ϕ : X ( Y is a multivalued mapping. For a multivalued
mapping ϕ : X ( Y and a subset A ⊂ Y we let

ϕ−1
s (A) = {x ∈ X : ϕ(x) ⊂ A},

ϕ−1
b (A) = {x ∈ X : ϕ(x) ∩A 6= ∅}.

Let H∗ be the C̆ech homology functor with compact carriers and coefficients
in the field of rational numbers Q from the category of Hausdorff topological
spaces and continuous maps to the category of a graded vector space and linear
maps of degree zero. Thus H∗(X) = {Hq(X)} is a graded vector space, Hq(X)
being a q-dimensional C̆ech homology group with compact carriers of X. For a
continuous map f : X → Y , H∗(f) is the induced linear map f∗ = {fq}, where
fq : Hq(X)→ Hq(Y ) (see [4]).

A set X is acyclic if

(i) X is non-empty,
(ii) Hq(X) = 0 for every q ≥ 1 and

(iii) H0(X) ≈ Q.

A perfect map p : X → Y is called Vietoris provided for every y ∈ Y the set
p−1(y) is acyclic. We recall that the composition of two Vietoris mappings is a
Vietoris mapping and if p : X → Y is a Vietoris map then p∗ : H∗(X)→ H∗(Y ) is
an isomorphism (see [4]). The symbol D(X,Y ) will denote the set of all diagrams
of the form

X
p←−−−− Z

q−−−−→ Y,

where p : Z → X denotes a Vietoris map and q : Z → Y denotes a continuous
map. Each such diagram will be denoted by (p, q).

Definition 2.1 (see [4])
Let (p1, q1) ∈ D(X,Y ) and (p2, q2) ∈ D(Y, T ). The composition of diagrams

X
p1←−−−− Z1

q1−−−−→ Y
p2←−−−− Z2

q2−−−−→ T ,

is called a diagram (p, q) ∈ D(X,T ),

X
p←−−−− Z1 4q1p2 Z2

q−−−−→ T,

where
Z1 4q1p2 Z2 = {(z1, z2) ∈ Z1 × Z2 : q1(z1) = p2(z2)},

p = p1 ◦ π1, q = q2 ◦ π2,

Z1
π1←−−−− Z1 4q1p2 Z2

π2−−−−→ Z2,
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π1(z1, z2) = z1 (Vietoris map), π2(z1, z2) = z2 for each (z1, z2) ∈ Z.
It shall be written

(p, q) = (p2, q2) ◦ (p1, q1).

Let ϕ : X ( Y be a multivalued map. We recall that the map ϕ is admis-
sible (resp. s-admissible) (see [4]) if there exist a Vietoris map p : Z → X and
a continuous map q : Z → Y such that for each x ∈ X,

q(p−1(x)) ⊂ ϕ(x) (resp. q(p−1(x)) = ϕ(x)),

to simplify the notation we will write (p, q) ⊂ ϕ (resp. (p, q) = ϕ)).
Let ϕ : X ( Y be a map and let A ⊂ X be a non-empty set. We denote by
ϕA : A( X a map given by the formula ϕA(x) = ϕ(x) for each x ∈ A.

Definition 2.2
A multivalued map ϕ : X ( Y is called locally admissible provided for any compact
and non-empty set K ⊂ X there exists an open set V ⊂ X such that K ⊂ V and
ϕV : V ( X is admissible.

Proposition 2.3 ([8])
Let ϕ : X ( Y and ψ : Y ( Z be locally admissible maps. Then ψ ◦ϕ : X ( Z is
locally admissible.

It is obvious that if a space X is compact then ϕ : X ( Y is locally admissible if
and only if ϕ : X ( Y is admissible.

Definition 2.4
A topological vector space is called Klee admissible provided for every compact
K ⊂ E and for every open neighborhood of zero V in E there exists a continuous
map πV : K → E such that

(2.4.1) (x− πV (x)) ∈ V for every x ∈ K,
(2.4.2) there exists a natural number n = nK such that πV (K) ⊂ En, where

En is an n-dimensional subspace of E.

It is well known that any locally convex space is Klee admissible. We will write
that a space X ∈ AC (X ∈ NAC) if there exists a Klee admissible space E and
a closed embedding h : X → E such that h(X) is a retract of E (h(X) is a retract
of some open set U ⊂ E such that h(X) ⊂ U).

Proposition 2.5 ([4, 6])
Let X ∈ NAC and let U ⊂ X be an open set. Then U ∈ NAC .

Theorem 2.6 ([4, 6])
Let X ∈ NAC . Consider a diagram

X
p←−−−− Z

q−−−−→ X,

where p is Vietoris and q is compact (q(Z) ⊂ X is compact). Then q∗ ◦ p−1
∗ is a

Leray endomorphism and Λ(q∗ ◦ p−1
∗ ) 6= 0 implies that p and q have a coincidence

point, that is, there is a point z ∈ Z such that p(z) = q(z).
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3. Multi-invertible maps

Definition 3.1
We say that a multivalued map ϕ : X ( Y is multi-invertible if there exists a mul-
tivalued map ←−ϕ : Y ( X (multi-inverse map) such that the following conditions
are satisfied

(3.1.1) for each x ∈ X and for each y ∈ Y (y ∈ ϕ(x)⇒ x ∈ ←−ϕ (y)),
(3.1.2) for each x ∈ X and for each y ∈ Y (x ∈ ←−ϕ (y)⇒ y ∈ ϕ(x)).

We observe that if ϕ : X ( Y is multi-invertible then there exists exactly one
multi-inverse map ←−ϕ : Y ( X given by the formula

←−ϕ (y) = ϕ−1
b (y) = {x ∈ X : y ∈ ϕ(x)}.

It is clear that a multivalued map ϕ : X ( Y is multi-invertible if and only if
ϕ(X) = Y and if a singlevalued map f : X → Y is invertible then

←−
f = f−1. Let

ϕ : X ( Y be a multivalued map. If ϕ has compact images and for every open
U ⊂ Y the set ϕ−1

s (U) (ϕ−1
b (Y \U)) is open (is closed), then ϕ is called an upper

semi-continuous mapping; we shall write that ϕ is u.s.c. We will say that an u.s.c.
multivalued map ϕ : X ( Y is perfect, if for each non-empty and compact set
A ⊂ Y the set ϕ−1

b (A) is non-empty and compact and ϕ is a closed map.

Proposition 3.2
A map ϕ : X ( Y is perfect if and only if ϕ is multi-invertible and ←−ϕ is a perfect
map.

Proof. It is obvious that

ϕ(A) =←−ϕ−1
b (A) for each non-empty set A ⊂ X

and
←−ϕ (B) = ϕ−1

b (B) for each non-empty set B ⊂ Y.

From Proposition 3.2 we get

Proposition 3.3
Let X and Y be compact spaces and let ϕ : X ( Y such that ϕ(X) = Y . A mul-
tivalued map ϕ : X ( Y is u.s.c. if and only if ←−ϕ : Y ( X is u.s.c..

We will give a few examples. Let Kn be a closed ball in euclidean space Rn with
the center of 0 and radius 1 and let Sn ⊂ Kn+1 be a sphere. We denote by �
a scalar product in Rn and let I = [0, 1].

Example 3.4
Let ϕ : Sn ( Sn be a multivalued map given by the formula

ϕ(x) = {y ∈ Sn : x� y = 0} for each x ∈ Sn.

We observe that ϕ is multi-invertible and←−ϕ = ϕ. For n = 2k, ϕ is not admissible.
Indeed, assume the contrary, i.e. that ϕ is admissible. Then there exist a Vietoris
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map p : Z → Sn and a continuous map q : Z → Sn such that (p, q) ⊂ ϕ. Hence, for
each z ∈ Z,

p(z)� q(z) = 0, so p and q are homotopic.
We have

Λ(q∗ ◦ p−1
∗ ) = Λ(p∗ ◦ p−1

∗ ) = Λ(IdH∗(Sn)) = 2.
From Theorem 2.6 there exists a point z ∈ Z such that p(z) = q(z), but it is a
contradiction. From the mathematical literature we know that for n = 2k−1 there
exists a continuous map f : Sn → Sn such that, for each x ∈ Sn, x � f(x) = 0.
Hence, ϕ is admissible, because (IdSn , f) ⊂ ϕ.

Example 3.5
Let ϕ : Sn ( Kn+1 be a multivalued map given by the formula

ϕ(x) = {t · x : t ∈ I}.

The map ϕ is u.s.c. and for each x ∈ Sn the set ϕ(x) is compact and convex, so
ϕ is s-admissible (in particular, admissible). A multivalued map ψ : Kn+1 ( Sn
given by the formula

ψ(x) =
{
x/‖x‖ for x 6= 0,
Sn for x = 0

is multi-inverse to ϕ. We observe that ψ it is not an admissible map. Indeed,
assume the contrary, i.e. that ϕ is admissible. Then there exist a Vietoris map
p : Z → Kn+1 and a continuous map q : Z → Sn such that (p, q) ⊂ ψ. Let
j : Sn → Kn+1 be an inclusion. We have the following diagram

H∗(Sn) j∗−−−−→ H∗(Kn+1) p∗←−−−− H∗(Z) q∗−−−−→ H∗(Sn).
Hence, it result that

(q∗ ◦ p−1
∗ ) ◦ j∗ = IdH∗(Sn),

but it is not possible.

Definition 3.6
A locally admissible map ϕ : X ( Y is multi-invertible if there exists a multi-
inverse and locally admissible map ←−ϕ : Y ( X.

Proposition 3.7
Let f : X → Y be a continuous map. The map f is multi-invertible if and only
if for each compact set K ⊂ Y there exist an open neighborhood U of K and a
continuous map g : U → X such that f ◦ g : U → Y is a Vietoris map.

Proof. Let f : X → Y be a continuous and multi-invertible map. From Definition
3.6 the multi-inverse map

←−
f : Y ( X is locally admissible. Let K ⊂ Y be a

compact set. There exists an open neighborhood U ⊂ Y of K such that
←−
f U : U (

X is an admissible map, that is, there exists a diagram (p, q) ∈ D(U,X) such that
(p, q) ⊂

←−
f . Hence we have

q(p−1(y)) ⊂ f−1(y) for each y ∈ U,

so f ◦ q = p is a Vietoris map. The proof in the opposite direction is obvious.
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In particular, if a continuous map f : X → Y is an r-map, that is, there exists
g : Y → X such that f ◦ g = IdY , then it is multi-invertible.

Proposition 3.8
Let ϕ : X ( Y be an admissible map. Assume that there exist Vietoris maps
p1 : Z → X and p2 : Z → Y such that (p1, p2) ⊂ ϕ. Then ϕ is multi-invertible.

Proof. We observe that ϕ(X) = Y and ((p1, p2) ⊂ ϕ)⇔ ((p2, p1) ⊂ ←−ϕ ).

We will say that ϕ : X ( Y is relatively proper if for each non-empty and compact
set K ⊂ Y the set ϕ−1

b (K) is non-empty and compact.

Proposition 3.9
Let ϕ : X ( Y be relatively proper. Assume that for each compact set K ⊂ X
there exist an open neighborhood U ⊂ X of K, an open neighborhood V ⊂ Y of
ϕ(K) and Vietoris maps p1 : Z → U and p2 : Z → V such that (p1, p2) ⊂ ϕU .
Then ϕ is multi-invertible and ←−ϕ is locally admissible.

Proof. It is easy to observe that ϕ is locally admissible. We show that the multi-
inverse map ←−ϕ : Y ( X is locally admissible. Let K ⊂ Y be a compact set. We
denote by K1 = ϕ−1

b (K) = ←−ϕ (K). From the assumption the set K1 is compact,
so there exist an open neighborhood U ⊂ X of K1, an open neighborhood V ⊂ Y
of ϕ(K1) and Vietoris maps p1 : Z → U and p2 : Z → V such that (p1, p2) ⊂ ϕU .
We have

K ⊂ ϕ(←−ϕ (K)) ⊂ ϕ(←−ϕ (K)) ⊂ V.
Hence (p2, p1) ⊂ ←−ϕ V and the proof is complete.

A few obvious properties of multi-invertible mappings will follow, which do
not require proof.

Proposition 3.10
Let ϕ,ψ : X ( Y , η : Y ( Z and θ : T ( S be multi-invertible maps. Then we
have

(3.10.1) for each x ∈ X and y ∈ Y y ∈ ϕ(←−ϕ (y)) and x ∈ ←−ϕ (ϕ(x)),
(3.10.2) ←−−−η ◦ ϕ =←−ϕ ◦←−η ,
(3.10.3)

←−−
(←−ϕ ) = ϕ,

(3.10.4)
←−−−
ϕ× θ = ←−ϕ ×

←−
θ , where the map ϕ × θ : X × T ( Y × S given by the

formula

(ϕ× θ)(x, t) = ϕ(x)× θ(t) for each (x, t) ∈ (X × T ),

(3.10.5) if ϕ(x) ∩ ψ(x) 6= ∅ for each x ∈ X and if Θ: X ( Y is a map given by
the formula

Θ(x) = ϕ(x) ∩ ψ(x) for each x ∈ X,

then Θ is multi-invertible and ←−Θ : Y ( X is given by the formula
←−Θ(y) =←−ϕ (y) ∩

←−
ψ (y) for each y ∈ Y.
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Remark 3.11
Let

X
f1−−−−→ Ty∆f

yIdT

Y
f2−−−−→ T

be a commutative diagram, where f1 and f2 are continuous maps such that
f1(X) = f2(Y ) and ∆f : X ( Y is a multivalued map given by the formula

∆f (x) = f−1
2 (f1(x)) for each x ∈ X. (1)

We observe that the map ∆f has a closed graph. Furthermore the map ∆f is
multi-invertible and

←−
∆f : Y ( X is given by the formula

←−
∆f (y) = f−1

1 (f2(y)) for each y ∈ Y. (2)

Moreover, if f1 and f2 are perfect maps then ∆f is u.s.c.. Let (p1, q1), (p2, q2) ∈
D(X,Y ) be such that q1 ◦←−p1 = q2 ◦←−p2 and let

X
p1←−−−− Z1

q1−−−−→ YyIdX

y∆pq

yIdY

X
p2←−−−− Z2

q2−−−−→ Y

be commutative diagrams, where ∆pq : Z1 ( Z2 is a multivalued map given by
the formula

∆pq(x) = ∆p(x) ∩∆q(x) for each x ∈ X

(see (1)). It is easy to show that ∆pq is well defined. From Proposition 3.10 (see
(3.10.5)) the map ∆pq is multi-invertible (see (2)) and u.s.c (see [4, 2]). It is clear
that

p2 ◦∆pq = p1 and q2 ◦∆pq = q1.

We observe that if ϕ : Z1 ( Z2 is a multivalued map such that

p2 ◦ ϕ = p1 and q2 ◦ ϕ = q1,

then ϕ(x) ⊂ ∆pq(x) for each x ∈ X.

(i) If there exists a homeomorphism h : Z1 → Z2 such that

p2 ◦ h = p1 and q2 ◦ h = q1,

then (p1, q1) ≈K1 (p2, q2) (in the sense of Kryszewski (see [7])) and (IdZ1 , h) ⊂
∆pq and (IdZ2 , h

−1) ⊂
←−
∆pq, where h−1 : Z2 → Z1 is an inverse homeomor-

phism to h.
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(ii) If there exist continuous maps f : Z1 → Z2 and g : Z2 → Z1 such that

p2 ◦ f = p1, q2 ◦ f = q1, p1 ◦ g = p2 and q1 ◦ g = q2,

then (p1, q1) ≈G (p2, q2) (in the sense of Górniewicz (see [5])) and (IdZ1 , f) ⊂
∆pq and (IdZ2 , g) ⊂

←−
∆pq .

(iii) If there exist Vietoris maps v1 : Z → Z1 and v2 : Z → Z2 such that

p2 ◦ v2 = p1 ◦ v1 and q2 ◦ v2 = q1 ◦ v1, (3)

then (p1, q1) ≈K2 (p2, q2) (in the sense of Kryszewski (see [7, 11])) and
(v1, v2) ⊂ ∆pq and (v2, v1) ⊂

←−
∆pq.

4. Admissible morphisms

Remark 3.11 justify the following definition.

Definition 4.1
Let (p1, q1), (p2, q2) ∈ D(X,Y ) and let

X
p1←−−−− Z1

q1−−−−→ Y, X
p2←−−−− Z2

q2−−−−→ Y.

We will say that the diagrams (p1, q1) and (p2, q2) are in relation in the setD(X,Y )
(we will write (p1, q1) ≈ad (p2, q2)) if there exists an admissible and multi-invertible
map ϕ : Z1 ( Z2 such that ←−ϕ is admissible and the following diagram is commu-
tative

X
p1←−−−− Z1

q1−−−−→ YyIdX

yϕ yIdY

X
p2←−−−− Z2

q2−−−−→ Y

that is
p2 ◦ ϕ = p1 and q2 ◦ ϕ = q1.

Proposition 4.2
The relation in the set D(X,Y ) introduced in Definition 4.1 is an equivalence
relation.

Proof. In the proof of reflexivity of the relation, it is enough to assume that Z1 =
Z2 and ϕ = IdZ1 . We observe that if

p2 ◦ ϕ = p1 and q2 ◦ ϕ = q1

then
p1 ◦←−ϕ = p2 and q1 ◦←−ϕ = q2, (4)

where ϕ : Z1 ( Z2 is a multi-invertible and admissible map and ←−ϕ is admissible.
Hence, the relation is symmetric.
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It shall be now proven that the relation is transitive. Suppose that (p1, q1) ≈ad
(p2, q2) and (p2, q2) ≈ad (p3, q3). Then from the assumption we have the following
commutative diagram

X
p1←−−−− Z1

q1−−−−→ YyId yϕ1

yId
X

p2←−−−− Z2
q2−−−−→ YyId yϕ2

yId
X

p3←−−−− Z3
q3−−−−→ Y

that is
p2 ◦ ϕ1 = p1, q2 ◦ ϕ1 = q1, p3 ◦ ϕ2 = p2, q3 ◦ ϕ2 = q2,

where ϕ1 and ϕ2 are admissible and multi-invertible maps. Let ϕ = ϕ2 ◦ ϕ1. By
Proposition 3.10 (see (3.10.2)) ϕ is an admissible and multi-invertible map. We
have

p3 ◦ ϕ = p3 ◦ (ϕ2 ◦ ϕ1) = p1 and q3 ◦ ϕ = q3 ◦ (ϕ2 ◦ ϕ1) = q1

and the proof is complete.

Proposition 4.3
Let (p1, q1), (p2, q2) ∈ D(X,Y ). The relation ≈ad in the set D(X,Y ) satisfies the
following conditions

(4.3.1) ((p1, q1) ≈ad (p2, q2))⇒ (q1 ◦←−p1 = q2 ◦←−p2),
(4.3.2) ((p1, q1) ≈ad (p2, q2))⇒ (q1∗ ◦ p−1

1∗ = q2∗ ◦ p−1
2∗ ),

(4.3.3) let (p3, q3), (p4, q4) ∈ D(Y, T ), then

((p1, q1) ≈ad(p2, q2) and (p3, q3) ≈ad (p4, q4))
⇒ (((p3, q3) ◦ (p1, q1)) ≈ad ((p4, q4) ◦ (p2, q2))).

Proof. (4.3.1). Let (p1, q1) ≈ad (p2, q2). Then there exists a multi-invertible and
admissible map ϕ such that p2 ◦ ϕ = p1 and q2 ◦ ϕ = q1. We observe that if
p2 ◦ ϕ = p1 then ←−ϕ ◦←−p2 =←−p1. Hence we have

q1 ◦←−p1 = q1 ◦ (←−ϕ ◦←−p2) = (q1 ◦←−ϕ ) ◦←−p2 = q2 ◦←−p2 (see (4)).

(4.3.2). Let (p1, q1) ≈ad (p2, q2). Then there exists a multi-invertible and
admissible map ϕ such that p2 ◦ ϕ = p1 and q2 ◦ ϕ = q1. Let (r, s) ⊂ ←−ϕ then (see
(4)),

q1 ◦ s = q2 ◦ r and p1 ◦ s = p2 ◦ r.

Hence
q1∗ ◦ s∗ = q2∗ ◦ r∗ and p1∗ ◦ s∗ = p2∗ ◦ r∗.

We observe that s∗ is an isomorphism, so

p1∗ = p2∗ ◦ r∗ ◦ s−1
∗ .
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We have

q1∗ ◦ p−1
1∗ = q1∗ ◦ (p2∗ ◦ r∗ ◦ s−1

∗ )−1 = q1∗ ◦ (s∗ ◦ r−1
∗ ◦ p−1

2∗ )
= (q1∗ ◦ s∗) ◦ r−1

∗ ◦ p−1
2∗ = q2∗ ◦ p−1

2∗ .

(4.3.3). We have the following commutative diagrams

X
p1←−−−− Z1

q1−−−−→ Y
p3←−−−− Z3

q3−−−−→ TyIdX

yϕ1

yIdY

yϕ2

yIdT

X
p2←−−−− Z2

q2−−−−→ Y
p4←−−−− Z4

q4−−−−→ T

that is
p2 ◦ ϕ1 = p1, q2 ◦ ϕ1 = q1, p4 ◦ ϕ2 = p3, q4 ◦ ϕ2 = q3.

We make the following diagram (see Definition 2.1)

X
p←−−−− Z1 4q1p3 Z3

q−−−−→ TyIdX

yψ yIdT ,

X
p′←−−−− Z2 4q2p4 Z4

q′−−−−→ T

where (p, q) = (p3, q3)◦(p1, q1), (p′, q′) = (p4, q4)◦(p2, q2) and ψ(z1, z3) = ϕ1(z1)×
ϕ2(z3) for each (z1, z3) ∈ Z1 4q1p3 Z3. First we need to prove that the map ψ is
well defined. Let (z1, z3) ∈ Z1 4q1p3 Z3 and (z2, z4) ∈ ϕ1(z1)× ϕ2(z3). We have

q2(z2) = q1(z1) = p3(z3) = p4(z4).

It is clear that (see (3.10.4)) the map ψ is multi-invertible, admissible and
←−
ψ given

by the formula
←−
ψ (z2, z4) =←−ϕ2(z2)×←−ϕ4(z4)

is admissible. We will show now that the above diagram is commutative. Let
f1 : Z14q1p3 Z3 → Z1, f3 : Z14q1p3 Z3 → Z3, f2 : Z24q2p4 Z4 → Z2, f4 : Z24q2p4

Z4 → Z4 be projections (see Definition 2.1). Note that f1 and f2 are Vietoris
mappings. We recall that by Definition 2.1 we have

p = p1 ◦ f1 q = q3 ◦ f3, p′ = p2 ◦ f2, q′ = q4 ◦ f4.

Let (z1, z3) ∈ Z1 4q1p3 Z3 and (z2, z4) ∈ ϕ1(z1)× ϕ2(z3). Thus

p′(z2, z4) = p2(f2(z2, z4)) = p2(z2) = p1(z1) = p1(f1(z1, z3)) = p(z1, z3)

and similarly

q′(z2, z4) = q4(f4(z2, z4)) = q4(z4) = q3(z3) = q3(f3(z1, z3)) = q(z1, z3)

and the proof is complete.
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The set of the class of the abstraction of the relation ≈ad will be denoted by
the symbol

Mad(X,Y ) = D(X,Y )/≈ad
.

The elements of the set Mad(X,Y ) will be called admissible morphisms and de-
noted by ϕad, ψad, . . .. The following denotation is assumed

ϕad = [(p, q)]ad (we write (p, q) ∈ ϕad),

where the diagram (p, q) is representative of the class of the abstraction [(p, q)]ad
in the relation ≈ad. We recall that a multivalued u.s.c. map ϕ : X ( Y is acyclic
if for each x ∈ X the set ϕ(x) is acyclic. The acyclic map ϕ is determined by an
admissible morphism ϕad = [(pϕ, qϕ)]ad ∈Mad(X,Y ), where

X
pϕ←−−−− Γϕ

qϕ−−−−→ Y,

Γϕ = {(x, y) ∈ X × Y : y ∈ ϕ(x)}, pϕ(x, y) = x (Vietoris map), qϕ(x, y) = y for
each (x, y) ∈ Γϕ such that for each x ∈ X,

qϕ(p−1
ϕ (x)) = ϕ(x).

For singlevalued mappings, there is the following fact (see [11]).

Proposition 4.4
Let f : X → Y be a continuous mapping and let (p, q) ∈ D(X,Y ), where

X
p←−−−− Z

q−−−−→ Y.

Then the following conditions are equivalent

(4.4.1) q = f ◦ p,
(4.4.2) (p, q) ≈ad (Id, f),
(4.4.3) q(p−1(x)) = f(x) for each x ∈ X.

Proof. (4.4.1) ⇒ (4.4.2). There is the following commutative diagram

X
p←−−−− Z

q−−−−→ YyIdX

yp yIdY .

X
IdX←−−−− X

f−−−−→ Y

Let ϕ = p. Then ϕ is a multi-invertible and admissible map and ←−ϕ is admissible.
Hence (p, q) ≈ad (Id, f).

(4.4.2) ⇒ (4.4.3). This implication is the result of Proposition 4.3 (see 4.3.1).
(4.4.3) ⇒ (4.4.1). Let (p, q) ∈ D(X,Y ) such that for each x ∈ X q(p−1(x)) =

f(x) and let z ∈ Z. Then there exists a point x1 ∈ X such that z ∈ p−1(x1).
Hence we get

q(z) = f(x1) = f(p(z)),

and the proof is complete.
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Let (p1, q1), (p2, q2) ∈ D(X,Y ) and let (p1, q1) ≈K2 (p2, q2) (see (3)). If ϕ =
v2 ◦←−v1 then ←−ϕ = v1 ◦←−v2 and

p2 ◦ ϕ = p1 and q2 ◦ ϕ = q1.

Hence (p1, q1) ≈ad (p2, q2).

Example 4.5
Let J = [−1, 1].

I
p1←−−−− I × J q1−−−−→ IyIdI

yϕ yIdI ,

I
p2←−−−− I × I q2−−−−→ I

where p1(x, y) = x, q1(x, y) = y2 for each (x, y) ∈ I × J , p2(x, y) = x, q2(x, y) = y
for each (x, y) ∈ I × I and ϕ(x, y) = (x, y2) for each (x, y) ∈ I × J . It is clear that

(p1, q1) ≈ad (p2, q2).

Assume that (p1, q1) ≈K2 (p2, q2). Then there exist Vietoris maps v1 : Z → I × J
and v2 : Z → I × I such that q1 ◦ v1 = q2 ◦ v2. Let y ∈ I. We have

q−1
1 (y) v1←−−−− v−1

1 (q−1
1 (y)) = v−1

2 (q−1
2 (y)) v2−−−−→ q−1

2 (y).

Hence, H∗(q−1
1 (y)) ∼= H∗(q−1

2 (y)) for each y ∈ I, but this is not possible.

Definition 4.6
For any ϕad ∈Mad(X,Y ), the set ϕ(x) = q(p−1(x)) where ϕad = [(p, q)]ad is called
an image of point x in an admissible morphism ϕad.

We denote by
ϕ : X →ad Y

a multivalued map (see, Definition 4.6) determined by an admissible morphism
ϕad = [(p, q)]ad ∈Mad(X,Y ).

Let TOP denote categories in which Hausdorff topological spaces are objects
and continuous mappings are category mappings. Let TOPad denote categories
in which Hausdorff topological spaces are objects and multivalued maps deter-
mined by admissible morphisms are category mappings. According to Proposition
4.3, (4.4.3) the category of TOPad is well defined and TOP ⊂ TOPad. Let
VECTG denote categories in which linear graded vector spaces are objects and
linear mappings of degree zero are category mappings.

Theorem 4.7 (see [12])
The mapping H̃∗ : TOPad → VECTG given by the formula

H̃∗(ϕ) = q∗ ◦ p−1
∗ ,

where ϕ is a multivalued map determined by ϕad = [(p, q)]ad is a functor and the
extension of the functor of the C̆ech homology H∗ : TOP→ VECTG.
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5. The strongly acyclic spaces

We will say that a space X is strongly acyclic if for each compact set K ⊂ X
there exists a compact and acyclic set A ⊂ X such that K ⊂ A. We observe that
from the construction of the C̆ech homology with compact carriers, we get:

Proposition 5.1
If X is a strongly acyclic space then X is an acyclic space.

Proof. Let
C(X) = {K ⊂ X : K is compact}

and let
CA(X) = {A ⊂ X : A is compact and acyclic}.

From the assumption the set CA(X) is cofinal in the set C(X) and the proof is
complete.

The following fact results from the Mazur’s Lemma.

Proposition 5.2
If E is a Banach space then it is a strongly acyclic space.

Proposition 5.3
Let {Xt, π

t
s,Σ} be an inverse system, where Σ is a directed set and for each t ∈ Σ

a space Xt is strongly acyclic. Assume that for each t ∈ Σ and for any compact set
Kt ⊂ Xt there exists an acyclic set At ⊂ Xt such that Kt ⊂ At and {At, (πA)ts,Σ}
is an inverse system, where for s ≤ t the map (πA)ts is a restriction of πts. Then
a space

Y = lim
←
{Xt, π

t
s,Σ}

is strongly acyclic.

Proof. Let K ⊂ Y be a compact set and let t ∈ Σ. We denote by ft : Y → Xt

a restriction of projection map. The set Kt = ft(K) ⊂ Xt is compact. From the
mathematical literature (see [2]) we know that

K = lim
←
{Kt, (πK)ts,Σ},

where for s ≤ t the map (πK)ts is a restriction of πts. In turn, from the assump-
tion there exists an acyclic and compact set At ⊂ Xt such that Kt ⊂ At and
{At, (πA)ts,Σ} is an inverse system, where for s ≤ t the map (πA)ts is a restriction
of πts. The set

A = lim
←
{At, (πA)ts,Σ} ⊂ Y

is compact and from the continuity of the C̆ech homology it results that A is
acyclic. It is clear that K ⊂ A and the proof is complete.

Proposition 5.4
If X1, X2, . . . , Xn are strongly acyclic spaces then X1×X2×· · ·×Xn is a strongly
acyclic space.
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Proof. Let X1, X2, . . . , Xn be strongly acyclic spaces and let K ⊂ X1×X2×· · ·×
Xn be a compact set. We denote byKi = πi(K), where πi : X1×X2×· · ·×Xn → Xi

is a projection, i = 1, 2, . . . , n. The setKi is compact, so there exists an acyclic and
compact set Ai ⊂ Xi such thatKi ⊂ Ai, i = 1, 2, . . . , n. Let A = A1×A2×· · ·×An.
Then A is compact and acyclic (see [4]), K ⊂ A and the proof is complete.

From Proposition 5.3 and Proposition 5.4 we get the following fact.

Proposition 5.5
Let S be a non-empty set and let for each s ∈ S a space Xs be strongly acyclic.
Then the cartesian product

X =
∏
s∈S

Xs

is a strongly acyclic space.

Proof. Let Σ = {ξ ⊂ S : ξ is a finite set}. Then (Σ,≤) is a directed set, where ≤
is an inclusion. From the mathematical literature we know that

X = lim
←
{Yξ, πξζ ,Σ},

where Yξ = Xs1 ×Xs2 × · · · ×Xsn
, ξ = {s1, s2, . . . , sn} ⊂ S and for each ζ ≤ ξ,

πξζ : Yξ → Yζ is a projection. From Proposition 5.4 the space Yξ for each ξ ∈ Σ is
strongly acyclic. We observe that the inverse system satisfies the assumption of
Proposition 5.3 (see proof of Proposition 5.4) and the proof is complete.

Proposition 5.6
Let Σ be a non-empty, directed set and let Et be a Banach space for each t ∈ Σ.
Let {Et, πts,Σ} be an inverse system. Assume that

E = lim
←
{Et, πts,Σ}

is a linear space. Then E is a strongly acyclic space.

Proof. Let K ⊂ E be a compact set and let t ∈ Σ. We denote by ft : E → Et
a restriction of a projection map. The set Kt = ft(K) ⊂ Et is compact. We have
(see proof of Proposition 5.3),

K = lim
←
{Kt, (πK)ts,Σ},

where for s ≤ t the map (πK)ts is a restriction of πts. From the assumption Et is
a Banach space, so the set conv(Kt) ⊂ Et is compact and convex. Let

A =
∏
t∈Σ

conv(Kt).

Then A is compact and convex. The space E is a closed subset in the cartesian
product

∏
t∈ΣEt, so the set A ∩ E ⊂ E is compact and, from the assumption, is

convex. Hence the set ft(A∩E) = At ⊂ Et is compact and convex (in particular,
acyclic), Kt ⊂ At and {At, (πA)ts,Σ} is an inverse system, where for s ≤ t the
map (πA)ts is a restriction of πts. From Proposition 5.3 it results that E is strongly
acyclic and the proof is complete.
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The next fact is obvious.

Proposition 5.7
Let X and Y be homeomorphic spaces. The space X is strongly acyclic if and only
if the space Y is strongly acyclic.

We will give the following important example.

Example 5.8
By Ck([0,m],Rn), where m ∈ N, k = 0, 1, . . ., we denote the Banach space of all
Ck-functions with the usual maximum norm

‖x‖m =
k∑
i=0

max{‖x(i)(t)‖, t ∈ [0,m]}.

Here x(k) denotes the k-th derivative of x and we also put x(1) = x′, x(0) = x. Let
Ck([0,∞],Rn) be a Fréchet space of all Ck-functions with the metric

d(x, y) =
∞∑
m=1

2−m ‖x− y‖m
1 + ‖x− y‖m

.

Let {Ckm, πpm,N} be an inverse system, where πpm = x|[0,m] for every x ∈ Ckp . One
can easily check that

E = lim
←
{Ckm, πpm,N} is homeomorphic to Ck([0,∞],Rn)

and E is a linear space. From Proposition 5.6 and Proposition 5.7 the space
Ck([0,∞],Rn) is strongly acyclic.

6. The points of coincidence

We observe that a map ϕ : X ( Y is admissible if and only if there exists
a map ∆ϕ : X →ad Y such that ∆ϕ(x) ⊂ ϕ(x) (we write ∆ϕ ⊂ ϕ) for each x ∈ X.
We say that a map ϕ is compact if ϕ(X) ⊂ Y is a compact set. Let ϕ : X →ad X.
By the symbol Λ(ϕ) we will denote a generalized Lefschetz number of ϕ (see [4]),
that is

Λ(ϕ) = Λ(ϕ∗) = Λ(q∗ ◦ p−1
∗ ) (provided that it is well defined),

where (p, q) ∈ ϕad (see Proposition 4.3). Let ϕ,ψ : X ( Y be multivalued maps.
We recall that the maps ϕ and ψ have a coincidence point if there exists a point
x ∈ X such that

ϕ(x) ∩ ψ(x) 6= ∅.

Let ϕ : X →ad X be a multivalued map given by ϕad = [(p, q)]ad ∈Mad(X,Y ). It
is easy to see that p, q : Z → X have a coincidence point if and only if there exists
a fixed point of ϕ, that is, there exists x0 ∈ X such that x0 ∈ ϕ(x0).
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Theorem 6.1
Let ϕ : X ( Y be a multi-invertible and locally admissible map and let ψ : X ( Y
be a compact and locally admissible map. Let X ∈ NAC (Y ∈ NAC). Then
there exists an open set U ⊂ X (U ⊂ Y ) and ∆: U →ad U , ∆ ⊂ (←−ϕ ◦ ψ)U
(∆ ⊂ (ψ ◦ ←−ϕ )U ) such that Λ(∆) is well defined and if Λ(∆) 6= 0 then ϕ and ψ
have a coincidence point.

Proof. Let X ∈ NAC . From the assumption the map ←−ϕ : Y ( X is locally
admissible. Let ψ : X ( Y be a compact and locally admissible map. The set
K1 = ψ(X) ⊂ Y is compact, so there exists an open neighborhood V ⊂ Y of
K1 such that ←−ϕ V : V ( X is admissible. Hence, there exists a multivauled
map ΦV : V →ad X such that ΦV ⊂ ←−ϕ V . Let K = ΦV (K1) ⊂ X. It is clear
that K is compact. There exists an open neighborhood U ⊂ X of K such that
ψU : U ( V ⊂ Y is admissible. Let ΨU : U →ad V be a map such that ΨU ⊂ ψU .
We have the following diagram

U
ΨU−−−−→ V

ΦV−−−−→ X.

Let ∆ = ΦV ◦ΨU . We observe that ∆ is compact, ∆(U) ⊂ U and ∆ ⊂ (←−ϕ ◦ψ)U .
Hence and from Proposition 2.5 and Theorem 2.6 Λ(∆) is well defined. Assume
that Λ(∆) 6= 0 then there exists a point x ∈ U such that

x ∈ ∆(x) ⊂ ←−ϕ (ψ(x)).

There exists a point y ∈ ψ(x) such that x ∈ ←−ϕ (y). Hence, y ∈ ϕ(x), so

ϕ(x) ∩ ψ(x) 6= ∅.

Let Y ∈ NAC and let ψ : X ( Y be a compact and locally admissible map. From
Proposition 2.3 the map ψ◦←−ϕ : Y ( Y is locally admissible. From the assumption
the set K = ψ(←−ϕ (Y )) is compact, so there exists an open neighborhood U ⊂ Y of
K such that (ψ◦←−ϕ )U : U ( U ⊂ Y is admissible. Hence, there exists ∆: U →ad U
such that ∆ ⊂ (ψ ◦←−ϕ )U . It is obvious that ∆ is compact and Λ(∆) is well defined.
Assume that Λ(∆) 6= 0 then there exists a point y ∈ U such that

y ∈ ∆(y) ⊂ ψ(←−ϕ (y)).

There exists a point x ∈ ←−ϕ (y) such that y ∈ ψ(x). Hence, y ∈ ϕ(x), so

ϕ(x) ∩ ψ(x) 6= ∅

and the proof is complete.

The following fact results from Theorem 6.1.

Proposition 6.2
Let ϕ : X ( Y be a multi-invertible and locally admissible map and let ψ : X ( Y
be a compact and locally admissible map. Assume that X ∈ NAC is strongly
acyclic or Y ∈ NAC is strongly acyclic, then ϕ and ψ have a coincidence point.
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Proof. In the proof of Theorem 6.1 it is enough to replace the set K with the set
of acyclic and compact A such that K ⊂ A. Then Λ(∆) = 1 and the proof is
complete.

From the last fact and Proposition 5.2, we get

Proposition 6.3
Let E be a Banach space. Let ϕ : X ( E be a multi-invertible and locally admis-
sible map and let ψ : X ( E be a compact and locally admissible map. Then ϕ
and ψ have a coincidence point.

The next fact is the simple conclusion of Proposition 6.2.

Proposition 6.4
Let ϕ : X ( Y be a multi-invertible and admissible map and let ψ : X ( Y be
a compact and admissible map. Furthermore, assume that an inverse map ←−ϕ is
admissible. If X ∈ AC or Y ∈ AC then the maps ϕ and ψ have a coincidence
point.

7. Conclusion

In the third paragraph we have proposed the definition of a multivalued invert-
ible mapping. In the context of such a definition if a mapping is multi-invertible
then there exists exactly one multi-inverse mapping. Moreover, if a singlevalued
mapping f : X → Y is invertible, then it is multi-invertible and

←−
f = f−1. Multi-

invertible mappings constitute a wide class of mappings and have many interesting
applications. In paragraph four we have applied multi-invertible mappings for the
construction of morphisms. Then, in paragraph six, it was proven that multi-
invertible mappings have coincidence properties.
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