Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 48 | 4 |

Tytuł artykułu

Two Treatments of Definite Descriptions in Intuitionist Negative Free Logic

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Sentences containing definite descriptions, expressions of the form `The F', can be formalised using a binary quantier that forms a formula out of two predicates, where ℩x[F;G] is read as `The F is G'. This is an innovation over the usual formalisation of definite descriptions with a term forming operator. The present paper compares the two approaches. After a brief overview of the system INF℩ of intuitionist negative free logic extended by such a quantier, which was presented in [4], INF℩ is first compared to a system of Tennant's and an axiomatic treatment of a term forming ℩ operator within intuitionist negative free logic. Both systems are shown to be equivalent to the subsystem of INF℩ in which the G of ℩x[F;G] is restricted to identity. INF℩ is then compared to an intuitionist version of a system of Lambert's which in addition to the term forming operator has an operator for predicate abstraction for indicating scope distinctions. The two systems will be shown to be equivalent through a translation between their respective languages. Advantages of the present approach over the alternatives are indicated in the discussion.

Rocznik

Tom

48

Numer

4

Opis fizyczny

Daty

wydano
2019-12-31

Twórcy

autor
  • Department of Logic and Methodology of Science, University of Lodz, Poland

Bibliografia

  • [1] M. Fitting and R. L. Mendelsohn, First-Order Modal Logic, Dordrecht, Boston, London, Kluwer, 1998. https://doi.org/10.1007/978-94-011-5292-1
  • [2] Andrzej Indrzejczak, Cut-free modal theory of definite descriptions, [in:] G. Metcalfe, G. Bezhanishvili, G. D'Agostino and T. Studer (eds.), Advances in Modal Logic, Vol. 12, pp. 359–378, London, College Publications, 2018.
  • [3] Andrzej Indrzejczak, Fregean description theory in proof-theoretical setting, Logic and Logical Philosophy, Vol. 28, No. 1 (2018), pp. 137–155. http://dx.doi.org/10.12775/LLP.2018.008
  • [4] N. Kürbis, A binary quantifier for definite descriptions in intuitionist negative free logic: Natural deduction and normalisation, Bulletin of the Section of Logic, Vol. 48, No. 2 (2019), pp. 81–97.https://doi.org/10.18778/0138-0680.48.2.01
  • [5] K. Lambert, A free logic with simple and complex predicates, Notre Dame Journal of Formal Logic, Vol. 27, No. 2 (1986), pp. 247–256. https://doi.org/10.1305/ndjfl/1093636615
  • [6] K. Lambert, Free logic and definite descriptions, [in:] E. Morscher and A. Hieke (eds.), New Essays in Free Logic in Honour of Karel Lambert, Dordrecht, Kluwer, 2001. https://doi.org/10.1007/978-94-015-9761-6_2
  • [7] E. Morscher and P. Simons, Free logic: A fifty-year past and an open future, [in:] E. Morscher and A. Hieke (eds.), New Essays in Free Logic in Honour of Karel Lambert, Dortrecht, Kluwer, 2001. https://doi.org/10.1007/978-94-015-9761-6_1
  • [8] N. Tennant, Natural Logic, Edinburgh, Edinburgh University Press, 1978.
  • [9] N. Tennant, A general theory of abstraction operators, The Philosophical Quarterly, Vol. 54, No. 214, pp. 105–133. https://doi.org/10.1111/j.0031-8094.2004.00344.x

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.ojs-doi-10_18778_0138-0680_48_4_04
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.