Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 48 | 3 | 213-243

Tytuł artykułu

Modal Boolean Connexive Logics: Semantics and Tableau Approach

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
In this paper we investigate Boolean connexive logics in a language with modal operators: □, ◊. In such logics, negation, conjunction, and disjunction behave in a classical, Boolean way. Only implication is non-classical. We construct these logics by mixing relating semantics with possible worlds. This way, we obtain connexive counterparts of basic normal modal logics. However, most of their traditional axioms formulated in terms of modalities and implication do not hold anymore without additional constraints, since our implication is weaker than the material one. In the final section, we present a tableau approach to the discussed modal logics.

Rocznik

Tom

48

Numer

3

Strony

213-243

Daty

wydano
2019-10-30

Twórcy

  • Nicolaus Copernicus University in Toruń, Poland, Department of Logic
  • Polish Academy of Sciences, Institute of Philosophy and Sociology

Bibliografia

  • R. L. Epstein, Relatedness and Implication, Philosophical Studies, Vol. 36 (1979), pp. 137–173.
  • R. L. Epstein, The Semantic Foundations of Logic. Vol. 1: Propositional Logics, Nijhoff International Philosophy Series, 1990.
  • T. Jarmużek, Tableau Metatheorem for Modal Logics, [in:] R. Ciuni, H. Wansing, C. Willkomennen (eds.), Recent Trends in Philosphical Logic, Trends in Logic, Springer Verlag 2013, pp. 105–128.
  • T. Jarmużek and B. Kaczkowski, On some logic with a relation imposed on formulae: tableau system F, Bulletin of the Section of Logic, Vol. 43, No. 1/2 (2014), pp. 53–72.
  • T. Jarmużek and M. Klonowski, On logic of strictly-deontic modalities, submitted to a review.
  • T. Jarmużek and J. Malinowski, Boolean Connexive Logics, Semantics and tableau approach, Logic and Logical Philosophy, Vol. 28, No. 3 (2019), pp. 427–448, DOI: http://dx.doi.org/10.12775/LLP.2019.003
  • A. Kapsner, Strong Connexivity, Thought, Vol. 1 (2012), pp. 141–145.
  • A. Kapsner, Humble Connexivity, Logic and Logical Philosophy, Vol. 28, No. 2 (2019), DOI: http://dx.doi.org/10.12775/LLP.2019.001
  • S. McCall, A History of Connexivity, [in:] D. M. Gabbay et al. (eds.), Handbook of the History of Logic, Vol. 11, pp. 415–449, Logic: A History of its Central Concepts, Amsterdam: Elsevier 2012.
  • H. Omori, Towards a bridge over two approaches in connexivelogics, Logic and Logical Philosophy, Vol. 28, No. 2 (2019), DOI: http://dx.doi.org/10.12775/LLP.2019.005
  • D. N. Walton, Philosophical basis of relatedness logic, Philosophical Studies, Vol. 36, No. 2 (1979), pp. 115–136.
  • H. Wansing and M. Unterhuber, Connexive conditional logic. Part 1, Logic and Logical Philosophy, Vol. 28, No. 2 (2019), DOI: http://dx.doi.org/10.12775/LLP.2018.018

Identyfikatory

Identyfikator YADDA

bwmeta1.element.ojs-doi-10_18778_0138-0680_48_3_05