Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 48 | 2 | 137-158

Tytuł artykułu

Full Cut Elimination and Interpolation for Intuitionistic Logic with Existence Predicate

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In previous work by Baaz and Iemhoff, a Gentzen calculus for intuitionistic logic with existence predicate is presented that satisfies partial cut elimination and Craig's interpolation property; it is also conjectured that interpolation fails for the implication-free fragment. In this paper an equivalent calculus is introduced that satisfies full cut elimination and allows a direct proof of interpolation via Maehara's lemma. In this way, it is possible to obtain much simpler interpolants and to better understand and (partly) overcome the failure of interpolation for the implication-free fragment.

Rocznik

Tom

48

Numer

2

Strony

137-158

Opis fizyczny

Daty

wydano
2019-06-30

Twórcy

  • Departamet de Filosofia, Universitat de Barcelona, Barcelona, Spain
  • Dipartimento di Filosofia e Comunicazione, Universitá di Bologna, Bologna, Italy

Bibliografia

  • [1] M. Baaz and R. Iemhoff. On interpolation in existence logics, Logic for Programming, Articial Intelligence, and Reasoning ed. by G. Sutcliffe and A. Voronkov, vol. 3835 of Lecture Notes in Computer Science. Springer, 2005, pp. 697–711. https://doi.org/10.1007/11591191_48
  • [2] M. Baaz and R. Iemhoff, Gentzen calculi for the existence predicate, Studia Logica, vol. 82, no. 1 (2006), pp. 7–23. https://doi.org/10.1007/s11225-006-6603-6
  • [3] M. Beeson, Foundations of Constructive Mathematics. Springer, 1985. https://doi.org/10.1007/978-3-642-68952-9
  • [4] G. Gherardi, P. Maffezioli, and E. Orlandelli, Interpolation in extensions of first-order logic, Studia Logica (2019), pp. 1–30. (published online). https://doi.org/10.1007/s11225-019-09867-0
  • [5] S. Maehara, On the interpolation theorem of Craig. Suugaku, vol. 12 (1960), pp. 235–237. (in Japanese).
  • [6] S. Negri, Contraction-free sequent calculi for geometric theories with an application to Barr's theorem, Archive for Mathematical Logic, vol. 42, no. 4 (2003), pp. 389–401. https://doi.org/10.1007/s001530100124
  • [7] S. Negri, Proof analysis in modal logic, Journal of Philosophical Logic, vol. 34, no. (5-6) (2005), pp. 507–544. https://doi.org/10.1007/s10992-005-2267-3
  • [8] S. Negri and J. von Plato, Structural Proof Theory. Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511527340
  • [9] D. Scott, Identity and existence in intuitionistic logic. In M. Fourman, C. Mulvey, and D. Scott, editors, Application of Shaves. Springer, 1979, pp. 660–696. https://doi.org/10.1007/BFb0061839
  • [10] A.S. Troelstra and H. Schwichtenberg, Basic Proof Theory. Cambridge University Press, 2nd edition, 2000. https://doi.org/10.1017/CBO9781139168717

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.ojs-doi-10_18778_0138-0680_48_2_04
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.