PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 48 | 2 |
Tytuł artykułu

Semi-Heyting Algebras and Identities of Associative Type

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An algebra A = ⟨A, ∨, ∧, →, 0, 1⟩ is a semi-Heyting algebra if ⟨A, ∨, ∧, 0, 1⟩ is a bounded lattice, and it satisfies the identities: x ∧ (x → y) ≈ x ∧ y, x ∧ (y → z) ≈ x ∧ [(x ∧ y) → (x ∧ z)], and x → x ≈ 1. 𝒮ℋ denotes the variety of semi-Heyting algebras. Semi-Heyting algebras were introduced by the second author as an abstraction from Heyting algebras.  They share several important properties with Heyting algebras.  An identity of associative type of length 3 is a groupoid identity, both sides of which contain the same three (distinct) variables that occur in any order and that are grouped in one of the two (obvious) ways. A subvariety of 𝒮ℋ is of associative type of length 3 if it is defined by a single identity of associative type of length 3. In this paper we describe all the distinct subvarieties of the variety 𝒮ℋ of asociative type of length 3.  Our main result shows that there are 3 such subvarities of 𝒮ℋ.
Rocznik
Tom
48
Numer
2
Opis fizyczny
Daty
wydano
2019-06-30
Twórcy
  • Departamento de Matemática, Universidad Nacional del Sur, Bahía Blanca, Argentina
  • Department of Mathematics, State University of New York, New Paltz, U.S.A.
Bibliografia
  • [1] J. C. Abbott, Semi-Boolean algebras, Matematicki Vesnik 19 (1967), pp. 177–198.
  • [2] M. Abad, J. M. Cornejo and J. P. Díaz Varela, Free-decomposability in varieties of semi-Heyting algebras, Mathematical Logic Quarterly 58(3) (2012), pp. 168–176. https://doi.org/10.1002/malq.201020092
  • [3] M. Abad, J. M. Cornejo and J. P. Díaz Varela, Semi-Heyting algebras term-equivalent to Gödel algebras, Order 30 (2013), pp. 625–642. http://dx.doi.org/10.1007/s11083-012-9266-0
  • [4] M. Abad, J. M. Cornejo and J. P. Díaz Varela, The variety generated by semi-Heyting chains, Soft Computing 15(4) (2010), pp. 721–728. https://doi.org/10.1007/s00500-010-0604-0
  • [5] M. Abad, J. M. Cornejo and J. P. Díaz Varela, The variety of semi-Heyting algebras satisfying the equation (0 → 1)*∨(0→ 1)**≈ 1, Reports on Mathematical Logic 46 (2011), pp. 75–90. http://dx.doi.org/10.4467/20842589RM.11.005.0283
  • [6] R. Balbes and P.H. Dwinger, Distributive lattices, University of Missouri Press, Columbia, 1974.
  • [7] G. Birkhoff, Lattice Theory, First Edition, Colloq. Publ., vol. 25, Providence, 1948.
  • [8] G. Birkhoff, Lattice Theory, Third Edition, Colloq. Publ., vol. 25, Providence, 1967.
  • [9] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Graduate Texts in Mathematics 78, Springer-Verlag, New York, 1981.
  • [10] D. Castaño and J. M. Cornejo, Gentzen-style sequent calculus for semi-intuitionistic logic, Studia Logica 104(6) (2016), pp. 1245–1265. https://doi.org/10.1007/s11225-016-9675-y
  • [11] J. M. Cornejo, Semi-intuitionistic logic, Studia Logica 98(1-2) (2011), pp. 9–25. https://doi.org/10.1007/s11225-011-9321-7
  • [12] J. M. Cornejo, The semi-Heyting Brouwer logic, Studia Logica 103(4) (2015), pp. 853–875. https://doi.org/10.1007/s11225-014-9596-6
  • [13] J. M. Cornejo and I. D. Viglizzo, On some semi-intuitionistic logics, Studia Logica 103(2) (2015), pp. 303–344. https://doi.org/10.1007/s11225-014-9568-x
  • [14] J. M. Cornejo and H. P. Sankappanavar, Implication zroupoids and identities of associative type, Quasigroups and Associated Systems 26 (2018), pp. 13–34.
  • [15] J. M. Cornejo and H. J. San Martín, A categorical equivalence between semi-Heyting algebras and centered semi-Nelson algebras, Logic Journal of the IGPL 26(4) (2018), pp. 408–428. https://doi.org/10.1093/jigpal/jzy006
  • [16] J. M. Cornejo and I. Viglizzo, Semi-intuitionistic logic with strong negation, Studia Logica 106(2) (2018), pp. 281–293. https://doi.org/10.1007/s11225-017-9737-9
  • [17] J. M. Cornejo and I. Viglizzo, Semi-Nelson algebras, Order 35(1) (2018), pp. 23–45. https://doi.org/10.1007/s11083-016-9416-x
  • [18] A. Day, Varieties of Heyting algebras, I. and II. Preprints.
  • [19] V. Glivenko, Sur quelques points de la logique de Brouwer, Académie Royale de Belgique, Bulletins de la Classe des Sciences 15 (1929), pp. 183–188.
  • [20] G. Grätzer, Lattice Theory. First Concepts and Distributive Lattices, Freeman, San Francisco, 1971.
  • [21] T. Hect and T. Katrinák, Equational classes of relative Stone algebras, Notre Dame Journal of Formal Logic 13 (1972), pp. 248–254. https://doi.org/10.1305/ndjfl/1093894723
  • [22] A. Horn, Logic with truth values in a linearly ordered Heyting algebras, Journal of Symbolic Logic 34 (1969), pp. 395–408. https://doi.org/10.2307/2270905
  • [23] M. Hosszú, Some functional equations related with the associative law, Publicationes Mathematicae Debrecen 3 (1954), pp. 205–214.
  • [24] T. Katriňák, Remarks on the W. C. Nemitz's paper ``Semi-Boolean lattices'', Notre Dame Journal Formal Logic 11 (1970), pp. 425–430. https://doi.org/10.1305/ndjfl/1093894072
  • [25] P. Köhler, Brouwerian semilattices, Transactions of the American Mathematical Society 268 (1981), pp. 103–126. https://doi.org/10.1090/S0002-9947-1981-0628448-3
  • [26] M. A. Kazim and M. Naseeruddin, On almost-semigroups, The Aligarh Bulletin of Mathematics 2 (1972), pp. 1–7.
  • [27] A. A. Monteiro, Axiomes independents pour les algebres de Brouwer, Revista de la Unión Matemática Argentina y de la Asociación Física Argentina} 17 (1955), pp. 148–160.
  • [28] W. Nemitz, Implicative semilattices, Transactions of the American Mathematical Society 117 (1965), pp. 128–142. https://doi.org/10.1090/S0002-9947-1965-0176944-9
  • [29] W. Nemitz, Semi-Boolean lattices, Notre Dame Journal Formal Logic 10 (1969), pp. 235–238. https://doi.org/10.1305/ndjfl/1093893707
  • [30] D. I. Pushkashu, Para-associative groupoids, Quasigroups and Related Systems 18(2) (2010), pp. 187–194.
  • [31] H. Rasiowa and R. Sikorski, The Mathematics of metamathematics, PWN, Warsaw, 1969.
  • [32] H. Rasiowa, An algebraic approach to non-classical logics, North-Holland, Amsterdam, 1974.
  • [33] H. P. Sankappanavar, Heyting algebras with dual pseudocomplementation, Pacific Journal of Mathematics 117 (1985), pp. 405–415. https://doi.org/10.2140/pjm.1985.117.405
  • [34] H. P. Sankappanavar, Pseudocomplemented Okham and De Morgan algebras, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 32 (1986), pp. 385–396. https://doi.org/10.1002/malq.19860322502
  • [35] H. P. Sankappanavar, Semi-Heyting algebras, Abstracts of Papers Presented to the American Mathematical Society, January 1987, p.13.
  • [36] H. P. Sankappanavar, Heyting algebras with a dual lattice endomorphism, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 33 (1987), pp. 712–724. https://doi.org/10.1002/malq.19870330610
  • [37] H. P. Sankappanavar, Semi-De Morgan algebras, Journal Symbolic Logic 52 (1987), pp. 712–724. https://doi.org/10.2307/2274359
  • [38] H. P. Sankappanavar, Semi-Heyting Algebras: An abstraction from Heyting algebras, Actas del IX Congreso Dr. Antonio A.R. Monteiro (2007), pp. 33–66.
  • [39] H. P. Sankappanavar, Expansions of semi-Heyting algebras: Discriminator varieties, Studia Logica 98(1-2) (2011), pp. 27–81. https://doi.org/10.1007/s11225-011-9322-6
  • [40] S. K. Stein, On the foundations of quasigroups, Transactions of the American Mathematical Society 85 (1957), pp. 228–256. https://doi.org/10.1090/S0002-9947-1957-0094404-6
  • [41] M. H. Stone, Topological representations of distributive lattices and Brouwerian logics, Časopis pro Pěstování Matematiky a Fysiky 67 (1937), pp. 1–25.
  • [42] A. Suschkewitsch, On a generalization of the associative law, Transactions of the American Mathematical Society 31(1) (1929), pp. 204–214. https://doi.org/10.1090/S0002-9947-1929-1501476-0
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ojs-doi-10_18778_0138-0680_48_2_03
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.