PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 48 | 1 |
Tytuł artykułu

Functional Completeness in CPL via Correspondence Analysis

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Kooi and Tamminga's correspondence analysis is a technique for designing proof systems, mostly, natural deduction and sequent systems. In this paper it is used to generate sequent calculi with invertible rules, whose only branching rule is the rule of cut. The calculi pertain to classical propositional logic and any of its fragments that may be obtained from adding a set (sets) of rules characterizing a two-argument Boolean function(s) to the negation fragment of classical propositional logic. The properties of soundness and completeness of the calculi are demonstrated. The proof of completeness is conducted by Kalmár's method. Most of the presented sequent-calculus rules have been obtained automatically, by a rule-generating algorithm implemented in Python. Correctness of the algorithm is demonstrated. This automated approach allowed us to analyse thousands of possible rules' schemes, hundreds of rules corresponding to Boolean functions, and to nd dozens of those invertible. Interestingly, the analysis revealed that the presented proof-theoretic framework provides a syntactic characteristics of such an important semantic property as functional completeness.
Rocznik
Tom
48
Numer
1
Opis fizyczny
Daty
wydano
2019-03-30
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ojs-doi-10_18778_0138-0680_48_1_04
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.