Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 45 | 3/4 |

Tytuł artykułu

Characterization of Birkhoff’s Conditions by Means of Cover-Preserving and Partially Cover-Preserving Sublattices

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In the paper we investigate Birkhoff’s conditions (Bi) and (Bi*). We prove that a discrete lattice L satisfies the condition (Bi) (the condition (Bi*)) if and only if L is a 4-cell lattice not containing a cover-preserving sublattice isomorphic to the lattice S*7 (the lattice S7). As a corollary we obtain a well known result of J. Jakub´ık from [6]. Furthermore, lattices S7 and S*7 are considered as so-called partially cover-preserving sublattices of a given lattice L, S7 ≪ L and S7 ≪ L, in symbols. It is shown that an upper continuous lattice L satisfies (Bi*) if and only if L is a 4-cell lattice such that S7 ≪/ L. The final corollary is a generalization of Jakubík’s theorem for upper continuous and strongly atomic lattices. Keywords: Birkhoff’s conditions, semimodularity conditions, modular lattice, discrete lattices, upper continuous lattice, strongly atomic lattice, cover-preserving sublattice, cell, 4-cell lattice.  

Rocznik

Tom

45

Numer

3/4

Opis fizyczny

Daty

wydano
2016-12-30

Twórcy

  • University of Wrocław, Department of Logic and Methodology of Sciences

Bibliografia

  • [1] G. Birkhoff, T.C. Bartee, Modern applied algebra, McGraw-Hill Book Company XII, New York etc. (1970).
  • [2] P. Crawley, R.P. Dilworth, Algebraic theory of lattices, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1973).
  • [3] E. Fried, G. Gr¨atzer, H. Lakser, Projective geometries as cover-preserving sublattices, Algebra Universalis 27 (1990), pp. 270–278.
  • [4] G. Grätzer, General lattice theory, Birkh¨auser, Basel, Stuttgart (1978).
  • [5] G. Grätzer, E. Knapp, Notes on planar semimodular lattices. I: Construction, Acta Sci. Math. 73, No. 3–4 (2007), pp. 445–462.
  • [6] J. Jakubík, Modular lattice of locally finite length, Acta Sci. Math. 37 (1975), pp. 79–82.
  • [7] M. Łazarz, K. Siemieńczuk, Modularity for upper continuous and strongly atomic lattices Algebra Universalis 76 (2016), pp. 493–95.
  • [8] S. MacLane, A conjecture of Ore on chains in partially ordered sets, Bull. Am. Math. Soc. 49 (1943), pp. 567–568.
  • [9] O. Ore, Chains in partially ordered sets, Bull. Am. Math. Soc. 49 (1943), pp. 558–566.
  • [10] M. Ramalho, On upper continuous and semimodular lattices, Algebra Universalis 32 (1994), pp. 330–340.
  • [11] M. Stern, Semimodular Lattices. Theory and Applications, Cambridge University Press (1999).
  • [12] A. Walendziak, Podstawy algebry ogólnej i teorii krat, Wydawnictwo Naukowe PWN, Warszawa (2009).

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.ojs-doi-10_18778_0138-0680_45_3_4_04
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.