PL EN

Preferencje
Język
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo

## Bulletin of the Section of Logic

2016 | 45 | 1 |
Tytuł artykułu

### A New Arithmetically Incomplete First-Order Extension of Gl All Theorems of Which Have Cut Free Proofs

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reference [12] introduced a novel formula to formula translation tool (“formula-tors”) that enables syntactic metatheoretical investigations of first-order modallogics, bypassing a need to convert them first into Gentzen style logics in order torely on cut elimination and the subformula property. In fact, the formulator tool,as was already demonstrated in loc. cit., is applicable even to the metatheoreticalstudy of logics such as QGL, where cut elimination is (provably, [2]) unavailable. This paper applies the formulator approach to show the independence of the axiom schema ☐A → ☐∀ A of the logics M3and ML3 of [17, 18, 11, 13]. This leads to the conclusion that the two logics obtained by removing this axiom are incomplete, both with respect to their natural Kripke structures and to arithmetical interpretations.  In particular, the so modified ML3 is, similarly to QGL, an arithmetically incomplete first-order extension of GL, but, unlike QGL, all its theorems have cut free proofs. We also establish here, via formulators, a stronger version of the disjunction property for GL and QGL without going through Gentzen versions of these logics (compare with the more complexproofs in [2,8]).
Słowa kluczowe
EN
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
Daty
wydano
2016-03-30
Twórcy
autor
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory