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TENSE OPERATORS ON BL-ALGEBRAS
AND THEIR APPLICATIONS

Abstract

In this paper, the notions of tense operators and tense filters in BL-algebras are

introduced and several characterizations of them are obtained. Also, the relation

among tense BL-algebras, tense MV -algebras and tense Boolean algebras are

investigated. Moreover, it is shown that the set of all tense filters of a BL-algebra

is complete sublattice of F (L) of all filters of BL-algebra L. Also, maximal

tense filters and simple tense BL-algebras and the relation between them are

studied. Finally, the notions of tense congruence relations in tense BL-algebras

and strict tense BL-algebras are introduced and an one-to-one correspondence

between tense filters and tense congruences relations induced by tense filters are

provided.

Keywords: (simple) tense BL-algebra, tense operators, tense filter, tense congru-

ence.
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1. Introduction

BL-algebras are the algebraic structures for Hájek Basic logic [8], in order
to investigate many valued logic by algebraic means. His motivations for
introducing BL-algebras were of two kinds. The first one was providing
an algebraic counterpart of a propositional logic, called Basic Logic, which
embodies a fragment common to some of the most important many-valued
logics, namely Lukasiewicz Logic, Gödel Logic and Product Logic. This
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Basic Logic (BL for short) is proposed as ”the most general”many-valued
logic with truth values in [0,1] and BL-algebras are the corresponding
Lindenbaum-Tarski algebras. The second one was to provide an algebraic
mean for the study of continuous t-norms (or triangular norms) on [0,1].
Most familiar example of a BL-algebra is the unit interval [0,1] endowed
with the structure induced by a continuous t-norm. In 1958, Chang intro-
duced the concept of an MV -algebra which is one of the most classes of
BL-algebras. MV -algebras, Gödel algebras and product algebras are the
most known classes of BL-algebras. Hájek in [8], introduced the notions
of filters and prime filters in BL-algebra and by using the prime filters of
BL-algebras, he proved the completeness of basic logic BL. Filter theory
play an important rule in studying these algebras. From logical point of
view, various filter correspond to various set of provable formulas.
Study of tense operators was originated in 1980’s, see e.g. a compendium
[2]. The classical tense logic is a logical system obtained from the bivalent
logic by adding the tense operators G (it is always going to be the case
that) and H (it has always been the case that). Starting with other log-
ical systems (intuitionistic calculus, many-valued logics etc.) and adding
appropriate tense operators we arrive to new tense logics. Two other op-
erators F and P are usually defined via G and H by F (x) = ¬G(¬x) and
P (x) = ¬H(¬x), where ¬x denotes negation of the proposition x. So,
G and H can be recognized as tense for all quantifiers and P and F as
tense existential quantifiers. Recall that for a classical propositional calcu-
lus represented by means of a Boolean algebra B = (B,∨,∧,¬, 0, 1), tense
operators were axiomatized in [2] by the following axioms:

(B1) G(1) = 1, H(1) = 1,

(B2) G(x ∧ y) = G(x) ∧G(y), H(x ∨ y) = H(x) ∨H(y),

(B3) ¬G¬H(x) ≤ x, ¬H¬G(x) ≤ x.

For Boolean algebras, the axiom (B3) is equivalent to

(B3’) G(x) ∨ y = x ∨H(y).

To introduce tense operators in non-classical logics, some more axioms must
be added on G and H to express connections with additional operations or
logical connectives. Tense operators have been studied by different authors
for various classes of algebras. For example, tense operators on Basic alge-
bras and effect algebras, on MV -algebras and Lukasiewicz-Moisil algebras
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and on intuitionistic logic (corresponding to Heyting algebras) were studied
by Botur et al. [1], Diaconescu et al. [5] and Chajda [3], respectively. This
motivated us to introduce tense operators on the structure of BL-algebras
as an extension of the tense MV -algebras and because there was an nega-
tion on BL-algebras, the operators F and P were introduced as similar
to tense operators on MV -algebras with two additional conditions. For
other interesting algebras the reader is referred to [4, 7, 6, 9]. This paper
is organized as follows:
Section 2 contains some fundamental definitions and results. In Section 3
we introduce the notion of tense operators on BL-algebras and we study
relation among tense BL-algebras, tense MV -algebras and tense Boolean
algebras. In Section 4 we introduce the notion of tense filters on BL-
algebras and we prove that the set of all tense filters of a BL-algebra is
complete sublattice of F (L) of all filters of BL-algebra L. Also, we study
maximal tense filters and simple tense BL-algebras and the relation be-
tween them. In Section 5 we introduce the notions of tense congruence in
tense BL-algebras and strict tense BL-algebras and we give some related
results.

2. Preliminaries

In this section, we give some fundamental definitions and results. For more
details, refer to the references.

Definition 2.1. [8] A BL-algebra is an algebra (L,∨,∧,�,→, 0, 1) of type
(2, 2, 2, 2, 0, 0) such that

(BL1) (L,∨,∧, 0, 1) is a bounded lattice,

(BL2) (L,�, 1) is a commutative monoid,

(BL3) z ≤ x→ y if and only if x� z ≤ y,

(BL4) x ∧ y = x� (x→ y),

(BL5) (x→ y) ∨ (y → x) = 1, for all x, y, z ∈ L.

A BL-algebra L is called a Gödel algebra, if x2 = x� x = x, for all x ∈ L
and a BL-algebra L is called an MV -algebra, if (x−)− = x, for all x ∈ L,
where x− = x → 0. A BL-algebra L is Boolean algebra if and only if
x2 = x and (x−)− = x, for all x ∈ L.
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Proposition 2.2. [11, 12] In any BL-algebra L the following hold:

(BL6) x ≤ y if and only if x→ y = 1,

(BL7) x ≤ x−− and x→ (y → z) = y → (x→ z),

(BL8) x ≤ y implies x�z ≤ y�z, y → z ≤ x→ z and z → x ≤ z → y,

(BL9) y → x ≤ (z → y)→ (z → x),

(BL10) x→ (y → z) = x� y → z,

(BL11) x� y = 0 if and only if x ≤ y−,

(BL12) x−−− = x−, x ≤ y → x and x� x− = 0,

(BL13) x→ ∧
i∈I
yi = ∧

i∈I
(x→ yi),

(BL14) (x∧y)−− = x−−∧y−−, (x→ y)−− = x−− → y−− and (x�y)−− =
x−− � y−−, for all x, y, z, yi ∈ L.

Definition 2.3 ([11, 12]). Let L be a BL-algebra and F be a nonempty
subset of L. Then

(i) F is called a filter of L if x� y ∈ F , for any x, y ∈ F and if x ∈ F and
x ≤ y then y ∈ F , for all x, y ∈ L.

(ii) F is called a maximal filter of L if it is a proper filter and is not properly
contained in any other proper filter of L.

(iii) L is called a simple BL-algebra if L is non-trivial and {1} is its only
proper filter.

Theorem 2.4 ([8]). Let F be a filter of BL-algebra L. Then the binary
relation ≡F on L which is defined by

x ≡F y if and only if x→ y ∈ F and y → x ∈ F

is a congruence relation on L.(Filters of L and congruence relations ≡F

on L are in one-to-one correspondence.) Define ·, ⇀, t, u on
L

F
, the set

of all congruence classes of L, as follows:

[x] · [y] = [x� y], [x] ⇀ [y] = [x→ y], [x]t [y] = [x∨ y], [x]u [y] = [x∧ y].

Then (
L

F
, ·,⇀,t,u, [0], [1]) is a BL-algebra which is called quotient BL-

algebra with respect to F .
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Definition 2.5. AnMV -algebra is an algebra (L,⊕,¬, 0, 1) of type (2, 1, 0)
satisfying the following axioms for any x, y, z ∈ L:

(MV 1) x⊕ y = y ⊕ x,

(MV 2) x⊕ (y ⊕ z) = (x⊕ y)⊕ z,

(MV 3) x⊕ 0 = x,

(MV 4) ¬¬x = x,

(MV 5) x⊕ 1 = 1, where 1 := ¬0,

(MV 6) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x.

In any MV -algebra L we can introduce the new operations �, ∨, ∧ and
→ for any x, y ∈ L as follow:
x � y = (x− ⊕ y−)−, x ∨ y = x ⊕ (¬x � y) = y ⊕ (¬y � x), x ∧ y =
x� (¬x⊕ y) = y � (¬y ⊕ x) and x→ y = ¬x⊕ y.

Definition 2.6. [5] Let (L,⊕,¬, 0, 1) be an MV -algebra and G,H : L→
L, be two unary operations on L. Then the structure (L;G,H) is called a
tense MV -algebra if it satisfies in the following conditions for any x, y ∈ L :

(A0) G(1) = 1, H(1) = 1,

(A1) G(x→ y) ≤ G(x)→ G(y), H(x→ y) ≤ H(x)→ H(y),

(A2) G(x)⊕G(y) ≤ G(x⊕ y), H(x)⊕H(y) ≤ H(x⊕ y),

(A3) G(x⊕ x) ≤ G(x)⊕G(x), H(x⊕ x) ≤ H(x)⊕H(x),

(A4) F (x)⊕ F (x) ≤ F (x⊕ x), P (x)⊕ P (x) ≤ P (x⊕ x),

(A5) x ≤ GP (x), x ≤ HF (x), where F and P are the unary operations of
L defined by F (x) = (¬G(¬x)), P (x) = (¬H(¬x)).

3. Tense Operators on BL-algebras

In this section, we introduce the notion of tense operators on BL-algebras
and we give some related results.
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Definition 3.1. Let (L,∨,∧,→,�, 0, 1) be a BL-algebra and G,H : L→
L be two unary operations on L. The structure (L;G,H) is called a tense
BL-algebra if the following conditions hold:

(TBL0) G(1) = 1, H(1) = 1.

(TBL1) G(x→ y) ≤ G(x)→ G(y), H(x→ y) ≤ H(x)→ H(y).

(TBL2) x ≤ GP (x), x ≤ HF (x), where F and P are two unary operations
of L defined by F (x) = (G(x−))− and P (x) = (H(x−))−, with additional
conditions (G(x−−))−− = G(x) and (H(x−−))−− = H(x), for all x, y ∈ L.

Note that by additional conditions in Definition 3.1, we conclude that
(F (x−))− = (G((x−)−)−)− = (G(x−−))−− = G(x) and (P (x−))− =
(H((x−)−)−)− = (H(x−−))−− = H(x). Hence F and G, P and H are
in some sense equivalent.

Example 3.2. [10] Let L = {0, a, b, 1}, where 0 < a < b < 1 and x ∧ y =
min{x, y}, x ∨ y = max{x, y} and operations � and → are defined as the
following tables:

Table 1 Table 2
� 0 a b 1
0 0 0 0 0
a 0 0 0 a
b 0 0 a b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a b 1 1 1
b a b 1 1
1 0 a b 1

Then (L,∨,∧,�,→, 0, 1) is a BL-algebra. We define the operations
G = H on L as G(0) = 0, G(a) = a,G(b) = b,G(1) = 1. It is not difficult
to check that G and H are tense operators on L and so (L;G,H) is a tense
BL-algebra.

Example 3.3. Every tense MV -algebra is a tense BL-algebra.

Recall that a frame is a pair (X,R), where X is a nonempty set and R
is a binary relation on X [2]. The notion of frame allows us to construct
the second example of tense BL-algebra. Also, we mention that if L is a
BL-algebra and X a set, then LX the set of all mappings from X into L,
together with the operations is a BL-algebra,
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• (f ∨ g)(x) = f(x) ∨ g(x),

• (f ∧ g)(x) = f(x) ∧ g(x),

• (f → g)(x) = f(x)→ g(x),

• f(x� y) = f(x)� f(y), 0(x) = 0, 1(x) = 1.

Now, we define LX
2 as follow:

LX
2 = {f ∈ LX | f−−(x) = f(x), for any x ∈ X}

it is clear by (BL14), LX
2 is a sub BL-algebra of LX .

Lemma 3.4. Let L be a BL-algebra and ai, bi ∈ L, for any i ∈ I. Then∧
i∈I

(ai → bi)�
∧
i∈I
ai ≤

∧
i∈I
bi

(whenever the arbitrary meets exist.)

Proof: Let ai, bi ∈ L, for any i ∈ I. Then by (BL13),∧
i∈I
ai →

∧
i∈I
bi =

∧
i∈I

(
∧
i∈I
ai → bi)

Now, since
∧
i∈I
ai ≤ ai, for any i ∈ I, by (BL8), we get that ai → bi ≤∧

i∈I
ai → bi, for any i ∈ I and so ai → bi ≤

∧
i∈I

(
∧
i∈I
ai → bi). Hence,

∧
i∈I

(ai → bi) ≤
∧
i∈I

(
∧
i∈I
ai → bi)

=
∧
i∈I
ai →

∧
i∈I
bi.

Hence, by (BL3), we conclude that∧
i∈I

(ai → bi)�
∧
i∈I
ai ≤

∧
i∈I
bi.
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Theorem 3.5. Let L be a complete BL-algebra, (X,R) be a frame with R
reflexive, G∗ and H∗ the unary operations on BL-algebra LX

2 defined by

G∗(f)(x) =
∧
{f(y)|y ∈ X,xRy}

H∗(f)(x) =
∧
{f(y)|y ∈ X, yRx}

for all f ∈ LX
2 and x ∈ X. Then (LX

2 , G
∗, H∗) is a tense BL-algebra.

Proof: Let x ∈ X. Then

G∗(1)(x) =
∧
{1(y)|y ∈ X,xRy}

=
∧
{1|y ∈ X,xRy}

= 1.

Similarly, H∗(1)(x) = 1. For f, g ∈ LX
2 and x ∈ X, we have

G∗(f → g)(x)�G∗(f)(x) =
∧
{(f → g)(y)|y ∈ X,xRy}

�
∧
{f(y)|y ∈ X,xRy}

=
∧
{f(y)→ g(y)|y ∈ X,xRy}

�
∧
{f(y)|y ∈ X,xRy}

≤
∧
{g(y)|y ∈ X,xRy}, By Lemma 3.4

= G∗(y)(x)

and so by (BL3), we conclude that G∗(f → g)(x) ≤ G∗(f)(x)→ G∗(g)(x).
Hence, G∗(f → g) ≤ G∗(f) → G∗(g). Similarly, H∗(f → g) ≤ H∗(f) →
H∗(g). Moreover, for f ∈ LX

2 and x ∈ X, we have

G∗P ∗(f)(x) = G∗((H(f−))−(x))

=
∧
{(H(f−))−(y)|xRy, y ∈ X}.

Now, by (BL7), we get that
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(H(f−)(y))− = (
∧
{f−(z)|zRy})−

=
∨
{f−−(z)|zRy}

=
∨
{f(z)|zRy}.

Since xRy, we get that
∨
{f(z)|zRy} ≥ f(x). Hence, for any x ∈ L such

that xRy, (H(f−))−(y) ≥ f(x) and so
∧
{(H(f−))−(y)|xRy} ≥ f(x).

Hence, G∗(P ∗(f))(x) ≥ f(x) and so G∗P ∗(f) ≥ f , similarly, H∗F ∗(f) ≥ f .
Moreover, for f ∈ LX

2 and x ∈ X, by (BL14), we get that

(G∗(f−−)(x))−− = (
∧
{f−−(y)|yRx})−−

=
∧
{f−−(y)|yRx}

=
∧
{f(y)|yRx}

= G∗(f)(x).

Hence, (G∗(f−−))−− = G∗(f) and similarly we have (H∗(f−−))−− =
H∗(f). Therefore, (LX

2 ;G∗, H∗) is a tense BL-algebra.

Proposition 3.6. In any tense BL-algebra (L;G,H), the following state-
ments hold for any x, y ∈ L:

(i) If x ≤ y, then G(x) ≤ G(y), H(x) ≤ H(y), F (x) ≤ F (y) and P (x) ≤
P (y).

(ii) G(x→ y) ≤ F (x)→ F (y) and H(x→ y) ≤ P (x)→ P (y).

(iii) x� F (y) ≤ F (P (x)� y) and x� P (y) ≤ P (F (x)� y).

(iv) P ≤ PGP and F ≤ FHF .

(v) PG(x) ≤ x−− and FH(x) ≤ x−−.

(vi) G(x)�G(y) ≤ G(x� y) and H(x)�H(y) ≤ H(x� y).

Proof:

(i) If x ≤ y, for x, y ∈ L, then by (BL6), x → y = 1. From (TBL0),
G(x → y) = H(x → y) = 1 and from (TBL1), G(x → y) ≤ G(x) → G(y)
and H(x → y) ≤ H(x) → H(y). Hence, G(x) → G(y) = 1 and H(x) →
H(y) = 1. Therefore, G(x) ≤ G(y) and H(x) ≤ H(y). Moreover, if x ≤ y,
for x, y ∈ L, then by (BL8), y− ≤ x− and so G(y−) ≤ G(x−) and H(y−) ≤



308 Akbar Paad

H(x−). Hence, by (BL8), we conclude that (G(x−))− ≤ (G(y−))− and
(H(x−))− ≤ (H(y−))− and so F (x) ≤ F (y) and P (x) ≤ P (y).

(ii) Since by (BL8) and (BL12), x → y ≤ x → y−− = x → (y− →
0) = y− → x−, so by (i), (TBL1) and (BL9), we have

G(x→ y) ≤ G(y− → x−)

≤ G(y−)→ G(x−)

≤ (G(x−)→ 0)→ (G(y−)→ 0)

= (G(x−))− → (G(y−))−

= F (x)→ F (y).

The other inequality for H, is proved analogously.

(iii) Since x�y ≤ x�y, by (BL3), we get that x ≤ y → x�y. Consider
x = P (x), so P (x) ≤ y → P (x)� y. By (i) and (ii),

G(P (x)) ≤ G(y → P (x)�y) ≤ F (y → (P (x)�y)) ≤ F (y)→ F (P (x)�y).

Since by (TBL3), x ≤ GP (x), we get that x ≤ F (y)→ F (P (x)�y) and so
by (BL3), x�F (y) ≤ F (P (x)�y). By similar way, x�P (x) ≤ P (F (x)�y).

(iv) From (TBL3), x ≤ GP (x) and x ≤ HF (x), so by (i), P (x) ≤
PGP (x) and F (x) ≤ FHF (x). Hence, P ≤ PGP and F ≤ FHF .
(v) From (TBL3), x− ≤ HF (x−), by (BL12), x ≤ x−− and by (i),
G(x) ≤ G(x−−). By (BL8), G(x−−)− ≤ G(x)− and so by (i), HF (x−) =
H(G(x−−)−) ≤ H(G(x)−). Hence, x− ≤ H(G(x)−) and so by (BL8),
(H(G(x)−))− ≤ x−−. Therefore, PG(x) ≤ x−−. By similar way, FH(x) ≤
x−−.

(v) By (TBL1) and (BL8),

G(x→ y)�G(x) ≤ (G(x)→ G(y))�G(x)

= G(x) ∧G(y)

≤ G(y)

taking y = x � y, it follows that G(x → x � y) � G(x) ≤ G(x � y). Since
by (BL10), y → (x→ x� y) = x� y → x� y = 1, we have y ≤ x→ x� y
and so by (i), G(y) ≤ G(x→ x� y). Hence, by (BL8),
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G(y)�G(x) ≤ G(x→ x� y)�G(x)

≤ G(x� y).

Therefore, G(x)�G(y) ≤ G(x� y). The proof for H is similar.

In the following, we study relation among tense BL-algebras, tense
MV -algebras and tense Boolean algebras.

Theorem 3.7. Let (L;G,H) be a tense BL-algebra and x−− = x, x2 = x,
for any x ∈ L. Then (L;G,H) is a tense MV -algebra.

Proof: Let (L;G,H) be a tense BL-algebra and x−− = x, x2 = x, for
any x ∈ L. Then by Definition 3.1, (A0), (A1) and (A5) are established.
We will prove (A2), (A3) and (A4). By (BL12), x, y ≤ y− → x = y ⊕ x =
x ⊕ y and by Proposition 3.6(i), G(x), G(y) ≤ G(x ⊕ y) and so G(x) ⊕
G(y) ≤ G(x ⊕ y) ⊕ G(x ⊕ y). Since x−− = x, x2 = x, for any x ∈ L,
we get that x ⊕ x = (x− � x−)− = (x−)− = x, for any x ∈ L. Hence,
G(x) ⊕ G(y) ≤ G(x ⊕ y) and by similar way, H(x) ⊕ H(y) ≤ H(x ⊕ y)
and so (A2) is established. Since x ⊕ x = x, for any x ∈ L, we have
G(x ⊕ x) = G(x) = G(x) ⊕ G(x), H(x ⊕ x) = H(x) = H(x) ⊕ H(x),
F (x ⊕ x) = F (x) = F (x) ⊕ F (x) and P (x ⊕ x) = P (x) = P (x) ⊕ P (x).
Therefore, (A3) and (A4) hold and so (L;G,H) is a tense MV -algebra.

Theorem 3.8. Let (L;G,H) be a tense BL-algebra and x−− = x, x2 = x,
G(x−) = G(x)− and H(x−) = H(x)− for any x ∈ L. Then (L;G,H) is a
tense Boolean algebra.

Proof: Let (L;G,H) be a tense BL-algebra and x−− = x, x2 = x,
G(x−) = G(x)− and H(x−) = H(x)− for any x ∈ L. Then by Definition
2.1, L is a Boolean algebra and by Theorem 3.7, (L;G,H) is a tense MV -
algebra. By Definition 2.6, (B1) and (B3) hold. Now, we will prove (B2).
Since x∧y ≤ x, y, by Proposition 3.6(i), we get that G(x∧y) ≤ G(x), G(y)
and so G(x∧ y) ≤ G(x)∧G(y). Now, by Proposition 3.6(vi) and (A2), for
x, y ∈ L, we have
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G(x ∧ y) = G(x� (x− ⊕ y)

≥ G(x)� (G(x− ⊕ y))

≥ G(x)� (G(x−)⊕G(y))

≥ G(x)� (G(x)− ⊕G(y))

≥ G(x)� (G(x)→ G(y))

≥ G(x) ∧G(y).

Therefore, G(x∧y) = G(x)∧G(y), by similar way, we conclude H(x∧y) =
H(x) ∧H(y). Moreover, for x, y ∈ L,

G(x ∨ y) = G((x− ∧ y−)−)

= (G(x− ∧ y−))−

= (G(x−) ∧G(y−))−

= (G(x)− ∧G(y)−)−

= G(x)−− ∨G(y)−−

= G(x) ∨G(y).

Similarly, we conclude H(x∨ y) = H(x)∨H(y). Therefore, (B2) hold and
so (L;G,H) is a tense Boolean algebra.

Definition 3.9. Let (L;G,H) be a tense BL-algebra. Then we define two
unary operations d and ρ on L by d(x) = x ∧G(x) ∧H(x) and ρ(x) = x�
G(x)�H(x), for any x ∈ L. We observe that for any x ∈ L, ρ(x) ≤ d(x) ≤ x
and if (L;G,H) is a tense Boolean algebra, then ρ(x) = d(x). Now, we
define dn(x) and ρn(x), for any n ∈ N and for any x ∈ L, by induction as
follow:

d0(x) = ρ0(x) = x, dn+1x = d(dn(x)), ρn+1(x) = ρ(ρn(x)).

Moreover, for nonempty subset X of L, ρk(X) is define as follow:

ρ0(X) = X, ρ(X) = {ρ(x)|x ∈ X}, ρk+1(X) = ρ(ρk(X)).

Lemma 3.10. In any tense BL-algebra (L;G,H), for any x, y ∈ L and
n ∈ N, the following statements hold:

(i) dn(0) = 0, dn(1) = 1, dn+1(x) ≤ dn(x).

(ii) If x ≤ y, then dn(x) ≤ dn(y).
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(iii) x = d(x) if and only if dn(x) = x, for any n ∈ N.

(iv) x ≤ dn(dn(x−))−.

(v) If d(x) = x, then d(x−) = x−.

Proof:

(i) d(0) = 0 ∧ G(0) ∧ H(0) = 0 so d2(0) = d(d(0)) = d(0) = 0,...,
dn(0) = d(dn−1(0)) = 0 and d(1) = 1 ∧ G(1) ∧ H(1) = 1 so d2(1) =
d(d(1)) = d(1) = 1,...,dn(1) = d(dn−1(1)) = d(1) = 1 and dn+1(x) =
d(dn(x)) = dn(x) ∧G(dn(x)) ∧H(dn(x)) ≤ dn(x).

(ii) If x ≤ y, then by Proposition 3.6(i), G(x) ≤ G(y) and H(x) ≤
H(y). Therefore,

d(x) = x ∧G(x) ∧H(x) ≤ y ∧G(y) ∧H(y) = d(y)

and so d(d(x)) ≤ d(d(y)). Hence, dn(x) ≤ dn(y).

(iii) If x = d(x), then

d2(x) = d(d(x)) = d(x) = x

d3(x) = d(d2(x)) = d(x) = x

...

dn(x) = d(dn−1(x)) = d(x) = x.

If dn(x) = x, for any n ∈ N, then for n = 1, d(x) = x.

(iv) We prove by induction on n. If n = 1, then by (TBL2)

x ≤ x ∧GP (x) ∧HF (x)

≤ (x ∨ P (x) ∨ F (x)) ∧G(x ∨ P (x) ∧ F (x)) ∧H(x ∨ P (x) ∨ F (x))

= d(x ∨ P (x) ∨ F (x))

≤ d(x−− ∨ (H(x−))− ∨ (G(x−))−)

= d((x− ∧H(x−) ∧G(x−))−)

= d(d(x−))−.

Suppose that the inequality holds for n, then we show that it is correct for
n+ 1. Since x ≤ d(d(x−))−, consider z = (dn(x−))−, we have:
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(dn(x−))− = z

≤ d(d(z−))−

= d(d(dn(x−))−−)−

≤ d(d(dn(x−)))− by (BL8), (BL12) and (ii)

= d(dn+1(x−))−.

Now by (i), dn(dn(x−))− ≤ dn(d(dn+1(x−))−) = dn+1(dn+1(x−))− and
since x ≤ dn(dn(x−))−, so we get that x ≤ dn+1(dn+1(x−))−. Therefore,
(iv) follows by induction.

(v) If d(x) = x, then by (iv), x− ≤ d(d(x−−))− ≤ d(d(x))− = d(x−).
Also, d(x−) = x− ∧G(x−) ∧H(x−) ≤ x− and so d(x−) = x−.

Proposition 3.11. In any tense BL-algebra (L;G,H), for any x, y ∈ L
and k, n ∈ N, the following statements hold:

(i) ρn(0) = 0, ρn(1) = 1, ρn+1(x) ≤ ρn(x).

(ii) If x ≤ y, then ρn(x) ≤ ρn(y).

(iii) ρk(x)� ρk(y) ≤ ρk(x� y).

(iv) ρk(xn) ≥ (ρk(x))n.

Proof:

(i) ρ(0) = 0 � G(0) � H(0) = 0 so ρ2(0) = ρ(ρ(0)) = ρ(0) = 0,...,
ρn(0) = ρ(ρn−1(0)) = 0 and ρ(1) = 1 � G(1) � H(1) = 1 and so ρ2(1) =
ρ(ρ(1)) = ρ(1) = 1,...,ρn(1) = ρ(ρn−1(1)) = ρ(1) = 1. Moreover, for x ∈ L,
ρn+1(x) = ρ(ρn(x)) = ρn(x)�G(ρn(x))�H(ρn(x)) ≤ ρn(x).

(ii) If x ≤ y, for x, y ∈ L, then by Proposition 3.6(i), G(x) ≤ G(y) and
H(x) ≤ H(y). Therefore, ρ(x) = x�G(x)�H(x) ≤ y�G(y)�H(y) = ρ(y),
and so ρ(ρ(x)) ≤ ρ(ρ(y)). Hence, ρn(x) ≤ ρn(y).

(iii) By Proposition 3.6(vi), for x, y ∈ L:

ρ(x)� ρ(y) = (x�G(x)�H(x))� (y �G(y)�H(y))

= (x� y)� (G(x)�G(y))� (H(x)�H(y))

≤ x� y �G(x� y)�H(x� y)

= ρ(x� y).



Tense Operators on BL-algebras and Their Applications 313

By induction, let ρn(x)� ρn(y) ≤ ρn(x� y), for x, y ∈ L. Then by Propo-
sition 3.6(vi),

ρn+1(x)� ρn+1(y) = ρ(ρn(x))� ρ(ρn(y))

= (ρn(x)�G(ρn(x))�H(ρn(x)))

� (ρn(y)�G(ρn(y))�H(ρn(y)))

= (ρn(x)� ρn(y))� (G(ρn(x))�G(ρn(y)))

� (H(ρn(x)�H(ρn(y)))

≤ ρn(x� y)�G(ρn(x)� ρn(y))�H(ρn(x)� ρn(y))

≤ ρn(x� y)�G(ρn(x� y)�H(ρn(x� y))

= ρ(ρn(x� y))

= ρn+1(x� y).

(iv) By (iii), for x ∈ L, we get that (ρk(x))n = ρk(x) � ρk(x) � .... �
ρk(x) ≤ ρk(x� x� ...� x) = ρk(xn).

4. Tense filters in BL-algebras and simple tense
BL-algebras

In this section, we introduce the notions of tense filters in BL-algebras and
simple tense BL-algebras and we give some related results.

Definition 4.1. Let (L;G,H) be a tense BL-algebra and F be a filter of
L. Then F is called a tense filter if G(x) ∈ F and H(x) ∈ F , for all x ∈ F .
Not that if F is a tense filter of tense BL-algebra (L;G,H), then ρ(x) ∈ F
and d(x) ∈ F , for any x ∈ F .

Example 4.2. [10] Let L = {0, a, b, 1}, where 0 < a < b < 1 and x ∧ y =
min{x, y}, x ∨ y = max{x, y} and operations � and → are defined as the
following tables:

Table 3 Table 4
� 0 a b 1
0 0 0 0 0
a 0 a a a
b 0 a b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a 0 1 1 1
b 0 a 1 1
1 0 a b 1
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Then (L,∨,∧,�,→, 0, 1) is a BL-algebra and it is not an MV -algebra.
We define the operationsG = H on L asG(0) = 0, G(a) = G(b) = G(1) = 1.
It is not difficult to check that G and H are tense operators on L. Now,
let F1 = {1} and F2 = {1, b}. Then F1 and F2 are tense filters of L.

Theorem 4.3. The tense filter [X) of tense BL-algebra (L;G,H) gener-
ated by nonempty subset X has the following form:

[X) = {y ∈ L|y ≥ a1 � ...� an, ai ∈ ρki(X); i = 1, ..., n, ki ∈ N, n ≥ 1}.

Proof: Let A = {y ∈ L|y ≥ a1 � ... � an, ai ∈ ρki(X); i = 1, ..., n, ki ∈
N, n ≥ 1}. Firstly, we prove that A is a tense filter of L. Obviously
1 ∈ A. Let x, y ∈ A. Then there exist a1, ..., an, b1, ..., bm ∈ L such that
ai ∈ ρki(X), bj ∈ ρtj (X), ki, tj ∈ N,m, n ≥ 1, 1 ≤ i ≤ n, 1 ≤ j ≤ m and
x ≥ a1 � a2 � ... � an, y ≥ b1 � ... � bm. Hence, x � y ≥ a1 � a2 � ... �
an � b1 � ...� bm and so x� y ∈ A. If x ≤ y and x ∈ A, then, there exist
a1, ..., ap ∈ L such that ai ∈ ρki(X) and a1 � ...� ap ≤ x, since x ≤ y, we
get that a1�a2� ...�ap ≤ y. Hence, y ∈ A. Thus, A is a filter of L. Now,
we show that A is a tense filter. If x ∈ A, then there exist a1, ..., aw ∈ L,
ai ∈ ρki(X) and a1�a2� ...�aw ≤ x. Since ai ∈ ρki(X), by Definition 3.9,
there exist xi ∈ X, such that ai = ρki(xi) for any i (1 ≤ i ≤ w). Hence,
a1 � a2 � ...� aw = ρk1(x1)� ρk2(x2)� ...� ρkw(xw) ≤ x, by Proposition
3.11(ii), we have

ρ(a1 � ...� aw) ≤ ρ(x) = x�G(x)�H(x) ≤ G(x), H(x)

and since by Proposition 3.11(iii),

ρ(a1)� ρ(a2)� ...� ρ(aw) ≤ ρ(a1 � ...� aw)

we get that ρ(a1)� ρ(a2)� ...� ρ(aw) ≤ G(x), H(x). Hence, ρk1+1(x1)�
ρk2+1(x2)� ...� ρkw+1(xw) ≤ G(x), H(x) and so G(x), H(x) ∈ A. There-
fore, A is a tense filter of L. If x ∈ X, since x ≥ ρ(x), we conclude x ∈ A.
Hence, X ⊆ A. Now, let B be a tense filter containing X and z ∈ A, then
there exist a1, ..., an ∈ L such that ai ∈ ρki(X) and a1 � a2 � ...� an ≤ x,
i.e. ρki(x1) � ... � ρkn(xn) ≤ x. Since xi ∈ X ⊆ B and B is a tense
filter. we get that ρki(xi) ∈ B and so ρk1(x1)� ...� ρkn(xn) ∈ B and since
ρk1(x1) � ... � ρkn(xn) ≤ x, we have x ∈ B. Therefore, A is a the least
tense filter of L containing X and so [X) = A.
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Proposition 4.4. Let (L;G,H) be a tense BL-algebra and x ∈ L. Then

[x) = {y ∈ L|y ≥ (ρk(x))n; for somen, k ∈ N}.

Proof: By Theorem 4.3, [x) = {y ∈ L|y ≥ a1 � a2 � ... � an, ai ∈
ρki(x); ki ∈ N, 1 ≤ i ≤ n, n ∈ N}. Consider k = max{k1, k2, ..., kn} such
that ai ∈ ρki(x). By Proposition 3.11 (i), we get that ρki(x) ≥ ρk(x). Now,
we have

y ≥ ρk1(x)� ρk2(x)� ...� ρkn(x) ≥ ρk(x)� ρk(x)� ...� ρk(x) = (ρk(x))n.

Hence, y ≥ (ρk(x))n and so [x) ⊆ {y ∈ L|y ≥ (ρk(x))n; for somen, k ∈ N}.
If y ∈ L, such that y ≥ (ρk(x))n, then y ≥ ρk(x)� ρk(x)� ...� ρk(x) and
so by Theorem 4.3, y ∈ [x). Therefore,

[x) = {y ∈ L|y ≥ (ρk(x))n; for somen, k ∈ N}.

Proposition 4.5. Let F be a tense filter of tense BL-algebra (L;G,H)
and x ∈ L. Then the tense filter generated by F ∪ {x} is characterized as

[F ∪ {x}) = {y ∈ L|y ≥ a� (ρk(x))n; for some a ∈ F, k, n ∈ N}

Proof: Let A = {y ∈ L|y ≥ a� (ρk(x))n; for some a ∈ F , k, n ∈ N}. We
prove that A is the least tense filter of L containing F ∪ {x}. Let x, y ∈ A,
then there exist a, b ∈ F , k, k′, n, n′ ∈ N such that x ≥ a � (ρk(x))n and
y ≥ b� (ρk

′
(x))n

′
.

Hence, x�y ≥ (a�(ρk(x))n)�b�(ρk
′
(x))n

′
= (a�b)�(ρk(x))n�(ρk

′
(x))n

′
.

Taking t = Max{k, k′}, then by Proposition 3.11(i), ρk(x) ≥ ρt(x) and
ρk

′
(x) ≥ ρt(x) and so (ρk(x))n � (ρk

′
(x))n

′ ≥ (ρt(x))n+n′
and so x � y ≥

(a � b) � (ρt(x))n+n′
. Therefore, x � y ∈ A. If x ≤ y and x ∈ A, then

there exist a ∈ F and k, n ∈ N such that x ≥ a � (ρk(x))n. Hence,
y ≥ a� (ρk(x))n and so y ∈ A. Therefore, A is a filter of L. If x ∈ A, then
there exist a ∈ F and k, n ∈ N x ≥ a � (ρk(x))n, and so by Proposition
3.11(ii), ρ(x) ≥ ρ(a� (ρk(x))n). From Proposition 3.11(iii), we get that

ρ(x) ≥ ρ(a� (ρk(x))n) ≥ ρ(a)� ρ((ρk(x)n)

≥ ρ(a)� (ρ(ρk(x)))n

= ρ(a)� (ρk+1(x))n

and since F is a tense filter of L, we get that ρ(a) ∈ F and since G(x) ≥
ρ(x), we have G(x) ≥ ρ(a) � (ρk+1(x))n. Hence, G(x) ∈ A and similarly,
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H(x) ∈ A. Therefore, A is a tense filter of L. Now, if B is a tense filter

containing F ∪ {x} and z ∈ A, then there exist a ∈ F and k, n ∈ N such
that, z ≥ a � (ρk(x))n. Since x ∈ B and B is a tense filter we have
((ρk(x))n ∈ B and since a ∈ F ⊆ B, we get that a� (ρk(x))n ∈ B. Hence,
z ∈ B and so A is the least tense filter of L containing F ∪ {x}. Thus,

[F ∪ {x}) = {y ∈ L|y ≥ a� (ρk(x))n; for some a ∈ F, k, n ∈ N}.

As usual, for two filters F1 and F2 of BL-algebra L, we let F1 ∧ F2 :=
F1 ∩ F2 and F1 ∨ F2 = [F1 ∪ F2) and it is easy to check

F1 ∨ F2 = {y|y ≥ x1 � x2; for somex1 ∈ F1, x2 ∈ F2}

Theorem 4.6. Ft(L) of all tense filter of tense BL-algebra (L;G,H) is a
complete sublattice of F (L) of all filter of L.

Proof: Let F1 and F2 be two tense filter and x ∈ F1 ∧ F2. Then x ∈ F1

and x ∈ F2 so G(x) ∈ F1 and G(x) ∈ F2. Hence, G(x) ∈ F1 ∧ F2 and
by similar way H(x) ∈ F1 ∧ F2. Also, if x ∈ F1 ∨ F2, then there exist
x1 ∈ F1 and x2 ∈ F2 such that x ≥ x1 � x2. Now by Proposition 3.6(i)
and (vi), we get that G(x) ≥ G(x1 � x2) ≥ G(x1) � G(x). Since F1 and
F2 are tense filters, we conclude that G(x1) ∈ F1 and G(x2) ∈ F2 and so
G(x) ∈ [F1 ∪ F2) = F1 ∨ F2. By similar way, H(x) ∈ F1 ∨ F2. Therefore,
F1 ∨ F2 is a tense filter and so Ft(L) is complete sublattice of F (L).

Theorem 4.7. Let F be a proper tense filter of tense BL-algebra (L;G,H).
Then the following statements are equivalent:

(i) F is a maximal tense filter of (L;G,H),

(ii) for each x ∈ L\F , there exist a ∈ F and k,m ∈ N such that a �
(ρk(x))m = 0.

Proof:

(i) ⇒ (ii) Let F be a maximal tense filter of tenseBL-algebra (L;G,H)
and x ∈ L\F . Then by F ⊂ [F ∪{x}) ⊆ L, we conclude that [F ∪{x}) = L
and since 0 ∈ L, we get that 0 ∈ [F∪{x}). From Proposition 4.5, there exist
a ∈ F and k,m ∈ N such that 0 ≥ a� ((ρk(x))m and so a� (ρk(x))m = 0.

(ii) ⇒ (i) Let E be a tense filter of L such that F ⊂ E ⊆ L. If there
exist x ∈ E\F , then by (ii) there exist b ∈ F and k,m ∈ N such that
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b� (ρk(x))m = 0. Now, Since b ∈ F ⊆ E, x ∈ E and E is a tense filter, we
get that (ρk(x))m ∈ E and so 0 = b� (ρk(x))m ∈ E. Hence, E = L and so
F is a maximal tense filter of L.

Theorem 4.8. For any tense BL-algebra (L;G,H), the following state-
ments are equivalent:

(i) (L;G,H) is a simple tense BL-algebra,

(ii) for any x ∈ L\{1}, there exist k, n ∈ N, such that (ρk(x))n = 0.

Proof:

(i) ⇒ (ii) Let (L;G,H) be a simple tense BL-algebra. Then {1} is a
maximal filter of L and so by Theorem 4.7 for any x ∈ L\{1}, there exist
k, n ∈ N such that 1� (ρk(x))n = 0. Therefore, (ρk(x))n = 0.

(ii) ⇒ (i) If for any x ∈ L\{1} there exist k, n ∈ N such that (ρk(x))n =
0, then by Theorem 4.7, F = {1} is a maximal tense filter and so there is
not nontrivial tense filter of L and so L is a simple tense BL-algebra.

Theorem 4.9. Let F be a proper tens filter of tense BL-algebra (L;G,H).
Then the following statements are equivalent:

(i) F is a maximal tense filter of (L;G,H),

(ii) for each x ∈ L, x 6∈ F if and only if ((ρk(x))n)− ∈ F , for some
k, n ∈ N.

Proof:

(i) ⇒ (ii) Let F be a maximal tense filter of (L;G,H) and x ∈ L\F .
Then by Theorem 4.7, there exist a ∈ F and n, k ∈ N, such that a �
(ρk(x))n = 0. By (BL11), a ≤ ((ρk(x)n)− and since a ∈ F , we conclude
that ((ρk(x)n))− ∈ F . Conversely, let ((ρk(x))n)− ∈ F for some k, n ∈ N.
If x ∈ F , then ρ(x) ∈ F and so (ρk(x))n ∈ F . By (BL12), 0 = (ρk(x))n �
((ρk(x))n)− ∈ F and so F = L which is contradiction. Therefore, x 6∈ F .

(ii) ⇒ (i) Let F ⊂ E ⊆ L and E be a tense filter of L. Then there
exists x ∈ E such that x 6∈ F . By (ii) there exist k, n ∈ N, such that
((ρk(x))n)− ∈ F ⊆ E, since E is a tense filter and x ∈ E, we have
(ρk(x))n ∈ E and so by (BL12), 0 = (ρk(x))n � ((ρk(x)n))− ∈ E. Hence
E = L and so F is a maximal tense filter of (L;G,H).
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5. Tense congruence relations in tense BL-algebras

In this section, we introduce the notions of tense congruence in tense BL-
algebras and strict tense BL-algebras and we give some related results.

Definition 5.1. Let θ be a congruence relation on BL-algebra L and
(L;G,H) be a tense BL-algebra. Then θ is called a tense congruence if it
is compatible with respect to the operations G and H. In fact, if xθy, then
G(x)θG(y) and H(x)θH(y), for any x, y ∈ L.

Proposition 5.2. Let (L;G,H) be a tense BL-algebra, F be a filter of L
and θF be a congruence relation induced by F . Then F is a tense filter of
L if and only if θF is a tense congruence.

Proof: Let θF be a tense congruence relation induced by F and x ∈ F .
Then 1→ x ∈ F and x→ 1 ∈ F and so 1θFx. Since θF is tense congruence,
we get that G(1)θFG(x) and H(1)θFH(x) and so 1θG(x) and 1θH(x).
Hence, G(x) ∈ F and H(x) ∈ F and so F is a tense filter of L. Conversely,
let F be a tense filter of L and xθF y, for x, y ∈ L. Then x → y ∈ F and
y → x ∈ F and since F is a tense filter of L, we have G(x → y) ∈ F
and H(x → y) ∈ F and by (TBL1), G(x → y) ≤ G(x) → G(y) and
H(x → y) ≤ H(x) → H(y). Now, since F is a filter of L, we conclude
that G(x) → G(y) ∈ F and H(x) → H(y) ∈ F . By similar way, we get
that G(y) → G(x) ∈ F and H(y) → H(x) ∈ F . Hence, G(x)θFG(y) and
H(x)θFH(y). Therefore, θF is a tense congruence relation on L.

Proposition 5.3. Let (L;G,H) be a tense BL-algebra. Then there is an
one-to-one correspondence between tense filters of L and tense congruences
relations induced by tense filters of L.

Proof: It follows by Theorem 2.4 and Proposition 5.2.

Theorem 5.4. Let (L;G,H) be a tense BL-algebra and F be a filter of L.

Then F is a tense filter of L if and only if (
L

F
;G∗, H∗) by the operators

G∗, H∗ :
L

F
→ L

F
such that

G∗([x]) := [G(x)], H∗([x]) := [H(x)]

and F ∗([x]) := [F (x)], P ∗([x]) := [P (x)] is a tense BL-algebra.
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Proof: Let (L;G,H) be a tense BL-algebra and F be a tense filter of

L. Then by Theorem 2.4, (
L

F
, ·,⇀,t,u, [0], [1]) is a BL-algebra. Define

operators G∗, H∗ :
L

F
→ L

F
by

G∗([x]) := [G(x)], H∗([x]) := [H(x)].

Now, we prove (
L

F
;G∗, H∗) is a tense BL-algebra. Firstly, we prove that

operations G∗ and H∗ are well-defined. Let [x] = [y]. Then x → y, y →
x ∈ F . Since F is a tense filter of L, by similar proof of Proposition 5.2, we
get that G(x)→ G(y) ∈ F and G(y)→ G(x) ∈ F . Hence, [G(x)] = [G(y)]
and so G∗([x]) = G∗([y]). Similarly, we have H∗([x]) = H∗([y]) and so
operations G∗ and H∗ are well-defined. By (TBL0) in tense BL-algebra
L, G∗([1]) = [G(1)] = [1] and similarly, H∗([1]) = [H(1)] = [1], and so

(TBL0) holds in
L

F
. Let [x], [y] ∈ L

F
. Then by (TBL1) in tense BL-

algebra L,

G∗([x] ⇀ [y]) = G∗([x→ y])

= [G(x→ y)]

≤ [G(x)→ G(y)]

= [G(x)] ⇀ [G(y)]

≤ G∗([x]) ⇀ G∗([y]).

Similarly, we get that H∗([x] ⇀ [y]) ≤ H∗([x]) ⇀ H∗([y]) and so (TBL1)

holds in
L

F
. Finally, By (TBL3) in tense BL-algebra L, we have

G∗P ∗([x]) = G∗(P ∗[x])

= G∗((H∗[x−])−)

= G∗([H(x−)]−)

= G∗([(H(x−))−])

= [G((H(x−))−]

= [GP (x))]

≥ [x].

Similarly, we get that H∗F ∗([x]) ≥ [x] and so (TBL2) holds in
L

F
. More-
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over, for [x] ∈ L

F
,

(G∗([x]−−))−− = (G∗([x−−]))−−

= ([G(x−−)])−−

= [G(x−−)−−]

= [G(x)]

= G∗([x])

Similarly, (H∗([x]−−))−− = H∗([x]). Therefore, (
L

F
;G∗, H∗) is a tense

BL-algebra. Conversely, let F be filter of L, x ∈ F and (
L

F
;G∗, H∗) is

a tense BL-algebra. Then [x] = [1] and so G∗([x]) = G∗([1]). Hence,
[G(x)] = [1] and so G(x) ∈ F . Similarly, H(x) ∈ F and so F is a tense
filter of L.

Definition 5.5. Let (L1;G1, H1) and (L2;G2, H2) be two tense BL-al-
gebras and φ : L1 → L2 be a BL-homomorphism. Then φ is called a
tense BL-homomorphism (or briefly, a TBL-homomorphism) if G(φ(x)) =
φ(G(x)) and H(φ(x)) = φ(H(x)), for all x ∈ L1.

Proposition 5.6. Let φ : (L1;G1, H1) → (L2;G2, H2) be a TBL-homo-
morphism. Then the following statements hold:

(i) kerφ is a tense filter of L1.

(ii) If F is a tense filter of L2, then φ−1(F ) is a tense filter of L1.

(iii) If kerφ ⊆ F , φ is onto and F is a tense filter of L1, then φ(F ) is a
tense filter of L2.

Proof:

(i) It is easy to check that kerφ is a filter of L1. Now, let x ∈ kerφ.
Then φ(x) = 1 and so 1 = G(1) = G(φ(x)) = φ(G(x)). Hence, G(x) ∈
kerφ, by similar way, H(x) ∈ kerφ and so kerφ is a tense filter of L1.

(ii) Let F be a tense filter of L2 and x ∈ φ−1(F ). Then φ−1(F ) is
a filter of L1 and φ(x) ∈ F and so φ(G(x)) = G(φ(x)) ∈ F . Hence
G(x) ∈ φ−1(F ), by similar way, H(x) ∈ φ−1(F ). Therefore, φ−1(F ) is a
tense filter of L1.

(iii) Assume that kerφ ⊆ F , φ is onto and F is a tense filter of L1.
Firstly, we prove φ(F ) is a filter of L2. Let a, b ∈ φ(F ). Then there exist
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x, y ∈ F , such that a = φ(x), b = φ(y) and a� b = φ(x)� φ(y) = φ(x� y).
Since x�y ∈ F , we get that a�b ∈ φ(F ). Moreover, if a ≤ b and a ∈ φ(F ),
then there exists z ∈ F and w ∈ L1, such that a = φ(z), b = φ(w). Hence,
φ(z) ≤ φ(w) and so φ(z → w) = 1. Thus, z → w ∈ kerφ ⊆ F and since
z ∈ F , we get that w ∈ F . Therefore, b = φ(w) ∈ φ(F ) and so φ(F ) is
a filter of L2. Now, let x ∈ φ(F ). Then there exists t ∈ F , such that
x = φ(t) and since F is a tense filter of L1, we have G(t) ∈ F and so
G(x) = G(φ(t)) = φ(G(t)) ∈ φ(F ). By similar way, H(x) ∈ φ(F ) and so
φ(F ) is a tense filter of L2.

Definition 5.7. A tense BL-algebra (L;G,H) is called strict if for all
x ∈ L, G(x� x) = G(x)�G(x) and H(x� x) = H(x)�H(x).

Example 5.8. Let (L;G,H) be tense BL-algebra Example 3.2. Then
(L;G,H) is a strict tense BL-algebra.

Proposition 5.9. Let (L;G,H) be a strict tense BL-algebra and F be a

tense filter of L. Then (
L

F
;G∗, H∗) is a strict tense BL-algebra.

Proof: By Theorem 5.4, (
L

F
;G∗, H∗) is a tense BL-algebra, when F is

a tense filter of L. Let [x], [y] ∈ L

F
. Since (L;G,H) is a strict tense BL-

algebra, we conclude that

G∗([x].[y]) = G∗([x� y])

= [G(x� y)]

= [G(x)�G(y)]

= [G(x)].[G(y)]

= G∗([x]).G∗([y]).

Similarly, H∗([x].[y]) = H∗([x]).H∗([y]). Therefore, (
L

F
;G∗, H∗) is a strict

tense BL-algebra.

Theorem 5.10. Let (L;G,H) be a strict tense BL-algebra and for any x ∈
L, x−− = x, G(x−) = (G(x))− and H(x−) = (H(x))−. Then (L;G,H) is
a tense MV -algebra.

Proof: Let (L;G,H) be a strict tense BL-algebra and x−− = x, for any
x ∈ L. Then L is a MV -algebra and by Definition 3.1, (A0), (A1) and
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(A5) are hold. Now, we prove (A2), (A3) and (A4). Let x, y ∈ L. Then by
Definition 2.5,

G(x)⊕G(y) = (G(x)− �G(y))−

= (G(x−)�G(y−))−

= (G(x− � y−))−

= G((x− � y−)−)

= G(x⊕ y).

Similarly, H(x)⊕H(y) = H(x⊕ y) and so (A2) holds. Moreover, if y = x,
then G(x) ⊕ G(x) = G(x ⊕ x) and H(x) ⊕H(x) = H(x ⊕ x) and so (A3)
holds. For (A4), since (L;G,H) is a strict tense BL-algebra, we have

F (x)⊕ F (x) = G(x−)− ⊕G(x−)−

= (G(x−)�G(x−))−

= (G(x− � x−))−

= (G((x⊕ x)−))−

= F (x⊕ x).

Similarly, P (x)⊕P (y) = P (x⊕ y) and so (A4) holds. Therefore, (L;G,H)
is a tense MV -algebra.

6. Conclusion

The results of this paper will be devoted to study the notion of the tense
operators on BL-algebras. We presented a characterization and several
important properties of the tense operators on BL-algebras. Moreover,
we investigated the relation among tense BL-algebras, tense MV -algebras
and tense Boolean algebras. Also, we defined the notions of tense filters
and maximal tense filters in BL-algebras and we stated and proved some
theorems which determine the relationship between this notions and simple
tense BL-algebra and we proved that the set of all tense filters of a BL-
algebra is complete sublattice of F (L). Finally, we introduced the notions
of tense congruence relations in tense BL-algebras and strict tense BL-
algebras and we shown that there is an one-to-one correspondence between
tense filters and tense congruences relations induced by tense filters.
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