ArticleOriginal scientific text

Title

A Semi-lattice of Four-valued Literal-paraconsistent-paracomplete Logics

Authors 1

Affiliations

  1. Russian Academy of Sciences, Institute of Philosophy, Moscow, Russian Federation

Abstract

In this paper, we consider the class of four-valued literal-paraconsistent-paracomplete logics constructed by combination of isomorphs of classical logic CPC. These logics form a 10-element upper semi-lattice with respect to the functional embeddinig one logic into another. The mechanism of variation of paraconsistency and paracompleteness properties in logics is demonstrated on the example of two four-element lattices included in the upper semi-lattice. Functional properties and sets of tautologies of corresponding literal-paraconsistent-paracomplete matrices are investigated. Among the considered matrices there are the matrix of Puga and da Costa's logic V and the matrix of paranormal logic P1I1, which is the part of a sequence of paranormal matrices proposed by V. Fernández.

Keywords

Four-valued logics, paraconsistent logics, paracomplete logics, isomorphisms, literal-paraconsistent-paracomplete logics, semi-lattice of logics

Bibliography

  1. O. Arieli, A. Avron, Four-valued paradefinite logics, Studia Logica, vol. 105(6) (2017), pp. 1087–1122, DOI: https://doi.org/10.1007/s11225-017-9721-4
  2. D. A. Bochvar, V. K. Finn, On many-valued logics admitting formalization of the analysis of antinomies. 1, [in:] Studies in mathematical linguistics, mathematical logic and information languages, Nauka, Moscow (1972), pp. 238–295.
  3. L. Bolc, P. Borowik, Many-valued Logics: 1: Theoretical Foundations , Springer-Verlag Berlin Heidelberg (1992).
  4. J. Ciuciura, A weakly-intuitionistic logic I1, Logical Investigations, vol. 21(2) (2015), pp. 53–60.
  5. L. Y. Devyatkin, On a continual class of four-valued maximally paranormal logics, Logical Investigations, vol. 24(2) (2018), pp. 85–91, DOI: https://doi.org/10.21146/2074-1472-2018-24-2-85-91 , in Russian.
  6. V. L. Fernández, Semântica de Sociedades para Lógicas n-valentes, Master's thesis, Campinas: IFCH-UNICAMP (2001).
  7. V. L. Fernández, M. E. Coniglio, Combining valuations with society semantics, Journal of Applied Non-Classical Logics, vol. 13(1) (2003), pp. 21–46, DOI: https://doi.org/10.3166/jancl.13.21-46
  8. S. Jaśkowski, A propositional calculus for inconsistent deductive systems, Studia Logica, vol. 24 (1969), pp. 143–157.
  9. A. Karpenko, N. Tomova, Bochvar's three-valued logic and literal paralogics: the lattice and functional equivalence, Logic and Logical Philosophy, vol. 26(2) (2017), pp. 207–235, DOI: https://doi.org/10.12775/LLP.2016.029
  10. A. S. Karpenko, Jaśkowski's criterion and three-valued paraconsistent logics, Logic and Logical Philosophy, vol. 7 (1999), pp. 81–86, DOI: https://doi.org/10.12775/LLP.1999.006
  11. A. S. Karpenko, A maximal paraconsistent logic: The combination of two three-valued isomorphs of classical propositional logic, [in:] D. Batens, C. Mortensen, G. Priest, J.-P. Van Bendegem (eds.), Frontiers of Paraconsistent Logic, Baldock Research Studies Press (2000), pp. 181–187.
  12. A. S. Karpenko, N. E. Tomova, Bochvar's three-valued logic and literal paralogics, Institute of Philosophy of Russian Academy of Science, Moscow (2016).
  13. R. A. Lewin, I. F. Mikenberg, Literal-paraconsistent and literal-paracomplete matrices, Mathematical Logic Quarterly, vol. 52(5) (2006), pp. 478–493, DOI: https://doi.org/10.1002/malq.200510044
  14. E. Mendelson, Introduction to Mathematical Logic, 4th ed., Chapman & Hall (1997).
  15. Y. I. Petrukhin, Deduction Normalization Theorem for Sette's Logic and Its Modifications, Moscow University Mathematics Bulletin, vol. 74(1) (2019), pp. 25–31, DOI: https://doi.org/10.3103/S0027132219010054
  16. V. M. Popov, On the logics related to A. Arruda's system V1, Logic and Logical Philosophy, vol. 7 (1999), pp. 87–90, DOI: https://doi.org/10.12775/LLP.1999.007
  17. G. Priest, K. Tanaka, Z. Weber, Paraconsistent logic (2013), URL: http://plato.stanford.edu/entries/logic-paraconsistent , Stanford Encyclopedia of Philosophy.
  18. L. Z. Puga, N. C. A. Da Costa, On the imaginary logic of N. A. Vasiliev, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 34 (1988), pp. 205–211.
  19. A. M. Sette, On propositional calculus P1, Mathematica Japonicae, vol. 18 (1973), pp. 173–180.
  20. A. M. Sette, E. H. Alves, On the equivalence between some systems of non-classical logic, Bulletin of the Section of Logic, vol. 25(2) (1973), pp. 68–72.
  21. A. M. Sette, W. A. Carnielli, Maximal weakly-intuitionistic logics, Studia Logica, vol. 55(1) (1995), pp. 181–203, DOI: https://doi.org/10.1007/BF01053037
  22. N. E. Tomova, On properties of a class of four-valued papranormal logics, Logical Investigations, vol. 24(1) (2018), pp. 75–89, DOI: https://doi.org/10.21146/2074-1472-2018-24-1-75-89
  23. N. E. Tomova, A. N. Nepeivoda, Functional properties of four-valued paralogics, Logical-Philosophical Studies, vol. 16(1–2) (2018), pp. 130–132.
Pages:
35-53
Main language of publication
English
Published
2020-11-13
Published online
2020-11-13
Humanities