ArticleOriginal scientific text

Title

On GE-algebras

Authors 1, 2, 3

Affiliations

  1. GITAM (Deemed to be University), Department of Mathematics, Hyderabad Campus, India
  2. Shahid Bahonar University of Kerman, Department of Pure Mathematics, Faculty of Mathematics and Computer, Kerman, Iran
  3. Gyeongsang National University, Department of Mathematics Education, Korea

Abstract

Hilbert algebras are important tools for certain investigations in intuitionistic logic and other non-classical logic and as a generalization of Hilbert algebra a new algebraic structure, called a GE-algebra (generalized exchange algebra), is introduced and studied its properties. We consider filters, upper sets and congruence kernels in a GE-algebra. We also characterize congruence kernels of transitive GE-algebras.

Keywords

(transitive) GE-algebra, filter, upper set, congruence kernel

Bibliography

  1. J. C. Abbott, Semi-boolean algebra, Matematički Vesnik, vol. 4(19) (1967), pp. 177–198.
  2. R. A. Borzooei, S. Khosravi Shoar, Implication algebras are equivalent to the dual implicative BCK-algebras, Scientiae Mathematicae Japonicae, vol. 63(3) (2006), pp. 429–431.
  3. R. A. Borzooei, J. Shohani, On generalized Hilbert algebras, Italian Journal of Pure and Applied Mathematics, vol. 29 (2012), pp. 71–86.
  4. D. Buşneag, A note on deductive systems of a Hilbert algebra, Kobe Journal of Mathematics, vol. 2(1) (1985), pp. 29–35.
  5. D. Buşneag, Categories of algebraic logic, Editura Academiei Romane (2006).
  6. S. Celani, A note on homomorphisms of Hilbert algebras, International Journal of Mathematics and Mathematical Sciences, vol. 29(1) (2002), pp. 55–61, DOI: https://doi.org/10.1155/S0161171202011134
  7. W. Y. C. Chen, J. S. Oliveira, Implication algebras and the Metropolis-Rota axioms for cubic lattices, Journal of Algebra, vol. 171(2) (1995), pp. 383–396, DOI: https://doi.org/10.1006/jabr.1995.1017
  8. A. Diego, Sur les algèbres de Hilbert, Translated from the Spanish by Luisa Iturrioz. Collection de Logique Mathématique, Sér. A, Fasc. XXI, Gauthier-Villars, Paris; E. Nauwelaerts, Louvain (1966).
  9. A. Figallo, Jr., A. Ziliani, Remarks on Hertz algebras and implicative semilattices, Bulletin of the Section of Logic, vol. 34(1) (2005), pp. 37–42.
  10. A. V. Figallo, G. Z. Ramón, S. Saad, A note on the Hilbert algebras with infimum, Matemática Contemporânea, vol. 24 (2003), pp. 23–37, 8th Workshop on Logic, Language, Informations and Computation – WoLLIC'2001 (Brasília).
  11. S. M. Hong, Y. B. Jun, On deductive systems of Hilbert algebras, Korean Mathematical Society. Communications, vol. 11(3) (1996), pp. 595–600.
  12. Y. Imai, K. Iséki, On axiom systems of propositional calculi, XIV, Proceedings of the Japan Academy, vol. 42(1) (1966), pp. 19–22, DOI: https://doi.org/10.3792/pja/1195522169
  13. Y. B. Jun, Commutative Hilbert algebras, Soochow Journal of Mathematics, vol. 22(4) (1996), pp. 477–484.
  14. H. S. Kim, Y. H. Kim, On BE-algebras, Scientiae Mathematicae Japonicae, vol. 66(1) (2007), pp. 113–116.
  15. A. Monteiro, Lectures on Hilbert and Tarski Algebras, Instituto de Matemática, Universidad Nacional del Sur, Bahía Blanca, Argentina (1960).
  16. A. A. Monteiro, Sur les algèbres de Heyting symétriques, Portugaliae Mathematica, vol. 39(1–4) (1980), pp. 1–237 (1985), special issue in honor of António Monteiro.
Pages:
81-96
Main language of publication
English
Published
2020-08-30
Published online
2020-08-30
Exact and natural sciences