ArticleOriginal scientific text

Title

Four-valued expansions of Dunn-Belnap's logic (I): Basic characterizations

Authors 1

Affiliations

  1. National Academy of Sciences of Ukraine, V.M. Glushkov Institute of Cybernetics, Department of Digital Automata Theory

Abstract

Basic results of the paper are that any four-valued expansion L4 of Dunn-Belnap's logic DB4 is de_ned by a unique (up to isomorphism) conjunctive matrix ℳ4 with exactly two distinguished values over an expansion 4 of a De Morgan non-Boolean four-valued diamond, but by no matrix with either less than four values or a single [non-]distinguished value, and has no proper extension satisfying Variable Sharing Property (VSP). We then characterize L4's having a theorem / inconsistent formula, satisfying VSP and being [inferentially] maximal / subclassical / maximally paraconsistent, in particular, algebraically through ℳ4|4's (not) having certain submatrices|subalebras. Likewise, [providing 4 is regular / has no three-element subalgebra] L4 has a proper consistent axiomatic extension if[f] ℳ4 has a proper paraconsistent / two-valued submatrix [in which case the logic of this submatrix is the only proper consistent axiomatic extension of L4 and is relatively axiomatized by the Excluded Middle law axiom]. As a generic tool (applicable, in particular, to both classically-negative and implicative expansions of DB4), we also prove that the lattice of axiomatic extensions of the logic of an implicative matrix ℳ with equality determinant is dual to the distributive lattice of lower cones of the set of all submatrices of ℳ with non-distinguished values.

Keywords

propositional logic, logical matrix, Dunn-Belnap's logic, expansion, [bounded] distributive/De Morgan lattice, equality determinant

Bibliography

  1. A. R. Anderson, N. D. Belnap, Entailment, vol. 1, Princeton University Press, Princeton (1975).
  2. R. Balbes, P. Dwinger, Distributive Lattices, University of Missouri Press, Columbia (Missouri) (1974).
  3. N. D. Belnap, A useful four-valued logic, [in:] J. M. Dunn, G. Epstein (eds.), Modern uses of multiple-valued logic, D. Reidel Publishing Company, Dordrecht (1977), pp. 8–37, DOI: http://dx.doi.org/10.1007/978-94-010-1161-7_2
  4. J. M. Dunn, Algebraic completeness results for R-mingle and its extensions, Journal of Symbolic Logic, vol. 35 (1970), pp. 1–13, URL: https://projecteuclid.org/euclid.jsl/1183737028
  5. J. M. Dunn, Intuitive semantics for first-order-degree entailment and `coupled tree', Philosophical Studies, vol. 29 (1976), pp. 149–168, DOI: http://dx.doi.org/10.1007/978-3-030-31136-0_3
  6. J. Łoś, R. Suszko, Remarks on sentential logics, Indagationes Mathematicae, vol. 20 (1958), pp. 177–183, DOI: http://dx.doi.org/10.1016/S1385-7258(58)50024-9
  7. A. I. Mal'cev, Algebraic systems, Springer Verlag, New York (1965), DOI: http://dx.doi.org/10.1007/978-3-642-65374-2
  8. G. Priest, The logic of paradox, Journal of Philosophical Logic, vol. 8 (1979), pp. 219–241, DOI: http://dx.doi.org/10.1007/BF00258428
  9. A. P. Pynko, Characterizing Belnap's logic via De Morgan's laws, Mathematical Logic Quarterly, vol. 41(4) (1995), pp. 442–454, DOI: http://dx.doi.org/10.1002/malq.19950410403
  10. A. P. Pynko, On Priest's logic of paradox, Journal of Applied Non-Classical Logics, vol. 5(2) (1995), pp. 219–225, DOI: http://dx.doi.org/10.1080/11663081.1995.10510856
  11. A. P. Pynko, Functional completeness and axiomatizability within Belnap's four-valued logic and its expansions, Journal of Applied Non-Classical Logics, vol. 9(1/2) (1999), pp. 61–105, DOI: http://dx.doi.org/10.1080/11663081.1999.10510958 special Issue on Multi-Valued Logics.
  12. A. P. Pynko, Subprevarieties versus extensions. Application to the logic of paradox, Journal of Symbolic Logic, vol. 65(2) (2000), pp. 756–766, URL: https://projecteuclid.org/euclid.jsl/1183746075
  13. A. P. Pynko, A relative interpolation theorem for infinitary universal Horn logic and its applications, Archive for Mathematical Logic, vol. 45 (2006), pp. 267–305, DOI: http://dx.doi.org/10.1007/s00153-005-0302-2
  14. A. P. Pynko, Subquasivarieties of implicative locally-nite quasivarieties, Mathematical Logic Quarterly, vol. 56(6) (2010), pp. 643–658, DOI: http://dx.doi.org/10.1002/malq.200810161
Pages:
401-437
Main language of publication
English
Published
2020-12-30
Published online
2020-12-30
Exact and natural sciences