ArticleOriginal scientific text

Title

Module Structure on Effect Algebras

Authors 1, 2

Affiliations

  1. Farhangian University Department of Mathematics Tehran, Iran
  2. Shahid Beheshti University Department of Mathematics Tehran, Iran

Abstract

In this paper, by considering the notions of effect algebra and product effect algebra, we define the concept of effect module. Then we investigate some properties of effect modules, and we present some examples on them. Finally, we introduce some topologies on effect modules.  

Keywords

effect algebra, product effect algebra, effect module, topology

Bibliography

  1. M. K. Bennett, D. J. Foulis, Phi-symmetric effect algebras, Foundations of Physics, vol. 25 (1995), pp. 1699–1722, DOI: http://dx.doi.org/10.1007/BF02057883
  2. R. A. Borzooei, A. Dvurečenskij, A. H. Sharafi, Material Implications in Lattice Effect Algebras, Information Sciences, vol. 433–434 (2018), pp. 233–240, DOI: http://dx.doi.org/10.1016/j.ins.2017.12.049
  3. R. A. Borzooei, S. S. Goraghani, Free Extended BCK-Module, Iranian Journal of Mathematical Science and Informatics, vol. 10(2) (2015), pp. 29–43, DOI: http://dx.doi.org/10.7508/ijmsi.2015.02.004
  4. R. A. Borzooei, S. S. Goraghani, Free MV-modules, Journal of Intelligent and Fuzzy System, vol. 31(1) (2016), pp. 151–161, DOI: http://dx.doi.org/10.3233/IFS-162128
  5. R. A. Borzooei, N. Kohestani, G. R. Rezaei, Metrizability on (Semi)topological BL-algebra, Soft Computing, vol. 16(10) (2012), pp. 1681–1690, DOI: http://dx.doi.org/10.1007/s00500-012-0852-2
  6. R. A. Borzooei, G. R. Rezaei, N. Kohestani, On (semi)topological BL-algebra, Iranian Journal of Mathematical Science and Informatics, vol. 6(1) (2011), pp. 59–77, DOI: http://dx.doi.org/10.7508/ijmsi.2011.01.006
  7. R. A. Borzooei, O. Zahiri, Topology on BL-algebras, Fuzzy Sets and Systems, vol. 289 (2016), pp. 137–150, DOI: http://dx.doi.org/10.1016/j.fss.2014.11.014
  8. R. Cignoli, I. M. L. D'Ottaviano, D. Mundici, Algebraic Foundations of Many-valued Reasoning, Kluwer Academic-Dordrecht (2000).
  9. A. Di Nola, P. Flondor, I. Leustean, MV-modules, Journal of Algebra, vol. 267 (2003), pp. 21–40, DOI: http://dx.doi.org/10.1016/S0021-8693(03)00332-6
  10. A. Di Nola, C. Russo, Semiring and semimodules issues in MV-algebras, Communications in Algebra, vol. 41(3) (2013), pp. 1017–1048, DOI: http://dx.doi.org/10.1080/00927872.2011.610074
  11. A. Dvurečenskij, New trends in quantum structures, Kluwer Academic/Ister Science-Dordrecht/Bratislava (2000).
  12. A. Dvurečenskij, Product effect algebras, International Journal of Theoretical Physics, vol. 41(10) (2002), pp. 193–215, DOI: http://dx.doi.org/10.1023/A:1021017905403
  13. A. Dvurečenskij, States on Pseudo effect algebras and integrals, Foundations of Physics, vol. 41 (2011), pp. 1143–1162, DOI: http://dx.doi.org/10.1007/s10701-011-9537-4
  14. A. Dvurečenskij, T. Vetterlein, Pseudo effect algebras. II. Group represetation, International Journal of Theoretical Physics, vol. 40 (2001), pp. 703–726, DOI: http://dx.doi.org/10.1023/A:1004144832348
  15. F. Forouzesh, E. Eslami, A. B. Saeid, Spectral topology on MV-modules, New Mathematics and Natural Computation, vol. 11(1) (2015), pp. 13–33, DOI: http://dx.doi.org/10.1142/S1793005715500027
  16. D. J. Foulis, M. K. Bennett, Effect algebras and unsharp quantum logics, Foundations of Physics, vol. 24(10) (1994), pp. 1331–1352, DOI: http://dx.doi.org/10.1007/BF02283036
  17. S. S. Goraghani, R. A. Borzooei, Results on Prime Ideals in PMV-algebras and MV-modules, Italian Journal of Pure and Applied Mathematics, vol. 37 (2017), pp. 183–196.
  18. M. R. Rakhshani, R. A. Borzooei, G. R. Rezaei, On topological effect algebras, Italian Journal of Pure and Applied Mathematics, vol. 39 (2018), pp. 312–325.
Pages:
269-290
Main language of publication
English
Published
2020-11-04
Published online
2020-11-04
Exact and natural sciences