ArticleOriginal scientific text

Title

Equality Logic

Authors 1

Affiliations

  1. Shahid Bahonar University of Kerman Faculty of Mathematics and Computer Department of Pure Mathematics Kerman, Iran

Abstract

In this paper, we introduce and study a corresponding logic to equality-algebras and obtain some basic properties of this logic. We prove the soundness and completeness of this logic based on equality-algebras and local deduction theorem. We show that this logic is regularly algebraizable with respect to the variety of equality∆-algebras but it is not Fregean. Then we introduce the concept of (prelinear) equality∆-algebras and investigate some related properties. Also, we study ∆-deductive systems of equality∆-algebras. In particular, we prove that every prelinear equality ∆-algebra is a subdirect product of linearly ordered equality∆-algebras. Finally, we construct prelinear equality ∆ logic and prove the soundness and strong completeness of this logic respect to prelinear equality∆-algebras.

Keywords

many-valued logic, equality logic, completness, prelinear equality∆-algebra, prelinear equality∆ logic

Bibliography

  1. W. J. Blok, D. Pigozzi, Algebraizable logics, vol. 77, American Mathematical Society (1989), DOI: http://dx.doi.org/10.1090/memo/0396
  2. W. J. Blok, D. Pigozzi, Abstract algebraic logic and the deduction theorem (2001), URL: https://orion.math.iastate.edu/dpigozzi/papers/aaldedth.pdf
  3. R. Borzooei, F. Zebardast, M. Aaly Kologani, Some types of filters in equality algebras, Categories and General Algebraic Structures with Applications, vol. 7 (Special Issue on the Occasion of Banaschewski's 90th Birthday (II)) (2017), pp. 33–55, DOI: http://dx.doi.org/10.1007/s00500-005-0534-4
  4. R. A. Borzooei, M. Zarean, O. Zahiri, Involutive equality algebras, Soft Computing, vol. 22(22) (2018), pp. 7505–7517, DOI: http://dx.doi.org/10.1007/s00500-018-3032-1
  5. J. R. Büchi, T. M. Owens, Skolem rings and their varieties, [in:] The Collected Works of J. Richard Büchi, Springer (1990), pp. 161–221, DOI: http://dx.doi.org/10.1007/978-1-4613-8928-6-11
  6. L. C. Ciungu, Internal states on equality algebras, Soft computing, vol. 19(4) (2015), pp. 939–953, DOI: http://dx.doi.org/10.1007/s00500-014-1494-3
  7. J. Czelakowski, Protoalgebraic logics, [in:] Protoalgebraic Logics, Springer (2001), pp. 69–122, DOI: http://dx.doi.org/10.1007/978-94-017-2807-2-3
  8. M. Dyba, M. El-Zekey, V. Novák, Non-commutative first-order EQ-logics, Fuzzy Sets and Systems, vol. 292 (2016), pp. 215–241, DOI: http://dx.doi.org/10.1016/j.fss.2014.11.019
  9. M. Dyba, V. Novák, EQ-logics: Non-commutative fuzzy logics based on fuzzy equality, Fuzzy Sets and Systems, vol. 172(1) (2011), pp. 13–32, DOI: http://dx.doi.org/10.1016/j.fss.2010.11.011
  10. M. El-Zekey, Representable good EQ-algebras, Soft Computing, vol. 14(9) (2010), pp. 1011–1023, DOI: http://dx.doi.org/10.1007/s00500-009-0491-4
  11. M. El-Zekey, V. Novák, R. Mesiar, On good EQ-algebras, Fuzzy Sets and Systems, vol. 178(1) (2011), pp. 1–23, DOI: http://dx.doi.org/10.1016/j.fss.2011.05.011
  12. S. Ghorbani, Monadic pseudo-equality algebras, Soft Computing, vol. 23(24) (2019), pp. 12937–12950, DOI: http://dx.doi.org/10.1007/s00500-019-04243-5
  13. S. Jenei, Equality algebras, Studia Logica, vol. 100(6) (2012), pp. 1201–1209, DOI: http://dx.doi.org/10.1007/s11225-012-9457-0
  14. S. Jenei, L. Kóródi, On the variety of equality algebras, [in:] Proceedings of the 7th conference of the European Society for Fuzzy Logic and Technology, Atlantis Press (2011), pp. 153–155, DOI: http://dx.doi.org/10.2991/eusat.2011.1
  15. J. Kühr, Pseudo BCK-semilattices, Demonstratio Mathematica, vol. 40(3) (2007), pp. 495–516, DOI: http://dx.doi.org/10.1515/dema-2007-0302
  16. V. Novák, On fuzzy type theory, Fuzzy Sets and Systems, vol. 149(2) (2005), pp. 235–273, DOI: http://dx.doi.org/10.1016/j.fss.2004.03.027
  17. V. Novák, EQ-algebras: primary concepts and properties, [in:] Proceedings of International Joint Czech Republic-Japan & Taiwan-Japan Symposium, Kitakyushu, Japan, August 2006 (2006), pp. 219–223.
  18. V. Novák, EQ-algebra-based fuzzy type theory and its extensions, Logic J2ournal of the IGPL, vol. 19(3) (2011), pp. 512–542, DOI: http://dx.doi.org/10.1093/jigpal/jzp087
  19. V. Novák, B. De Baets, EQ-algebras, Fuzzy Sets and Systems, vol.160(20) (2009), pp. 2956–2978, DOI: http://dx.doi.org/10.1016/j.fss.2009.04.010
  20. R. Suszko, Non-Fregean logic and theories, Analele Universitatii Bucuresti, Acta Logica, vol. 11 (1968), pp. 105–125.
  21. J. T. Wang, X. L. Xin, Y. B. Jun, Very true operators on equality algebras, Journal of Computational Analysis and Applications, vol. 24(3) (2018), DOI: http://dx.doi.org/10.1515/math-2016-0086
  22. M. Zarean, R. A. Borzooei, O. Zahiri, On state equality algebras, Quasi-groups and Related Systems, vol. 25(2) (2017), pp. 307–326.
  23. F. Zebardast, R. A. Borzooei, M. A. Kologani, Results on equality algebras, Information Sciences, vol. 381 (2017), pp. 270–282, DOI: http://dx.doi.org/10.1016/j.ins.2016.11.027
Pages:
291-324
Main language of publication
English
Published
2020-11-04
Published online
2020-11-04
Exact and natural sciences