ArticleOriginal scientific text

Title

Empirical Negation, Co-Negation and the Contraposition Rule II: Proof-Theoretical Investigations

Authors 1

Affiliations

  1. Japan Advanced Institute of Science and Technology, School of Information Science

Abstract

We continue the investigation of the first paper where we studied logics with various negations including empirical negation and co-negation. We established how such logics can be treated uniformly with R. Sylvan's CCω as the basis. In this paper we use this result to obtain cut-free labelled sequent calculi for the logics.

Keywords

empirical negation, co-negation, labelled sequent calculus, intuitionism

Bibliography

  1. M. De, Empirical Negation, Acta Analytica, vol. 28 (2013), pp. 49–69, DOI: http://dx.doi.org/10.1007/s12136-011-0138-9
  2. M. De, H. Omori, More on Empirical Negation, [in:] R. Goreé, B. Kooi, A. Kurucz (eds.), Advances in Modal Logic, vol. 10, College Publications (2014), pp. 114–133.
  3. H. Friedman, Intuitionistic Completeness of Heyting's Predicate Calculus, Notices of the American Mathematical Society, vol. 22(6) (1975), pp. A648–A648.
  4. A. B. Gordienko, A Paraconsistent Extension of Sylvan's Logic, Algebra and Logic, vol. 46(5) (2007), pp. 289–296, DOI: http://dx.doi.org/10.1007/s10469-007-0029-8
  5. V. N. Krivtsov, An intuitionistic completeness theorem for classical predicate logic, Studia Logica, vol. 96(1) (2010), pp. 109–115, DOI: http://dx.doi.org/10.1007/s11225-010-9273-3
  6. S. Negri, Proof analysis in modal logic, Journal of Philosophical Logic, vol. 34(5–6) (2005), pp. 507–544, DOI: http://dx.doi.org/10.1007/s10992-005-2267-3
  7. S. Negri, Proof analysis in non-classical logics, [in:] C. Dimitracopoulos, L. Newelski, D. Normann, J. Steel (eds.), ASL Lecture Notes in Logic, vol. 28, Cambridge University Press (2007), pp. 107–128, DOI: http://dx.doi.org/10.1017/CBO9780511546464.010
  8. S. Negri, J. von Plato, Proof analysis: a contribution to Hilbert's last problem, Cambridge University Press (2011), DOI: http://dx.doi.org/10.1017/CBO9781139003513
  9. G. Priest, Dualising Intuitionistic Negation, Principia, vol. 13(2) (2009), pp. 165–184, DOI: http://dx.doi.org/10.5007/1808-1711.2009v13n2p165
  10. R. Sylvan, Variations on da Costa C Systems and dual-intuitionistic logics I. Analyses of C! and CC!, Studia Logica, vol. 49(1) (1990), pp. 47–65, DOI: http://dx.doi.org/10.1007/BF00401553
  11. A. S. Troelstra, D. van Dalen, Constructivism in Mathematics: An Introduction, vol. II, Elsevier (1988).
  12. W. Veldman, An Intuitionistic Completeness Theorem for Intuitionistic Predicate Logic, The Journal of Symbolic Logic, vol. 41(1) (1976), pp. 159–166, DOI: http://dx.doi.org/10.2307/2272955
Pages:
359-375
Main language of publication
English
Published
2020-12-30
Published online
2020-12-30
Exact and natural sciences