ArticleOriginal scientific text

Title

Empirical Negation, Co-negation and Contraposition Rule I: Semantical Investigations

Authors 1

Affiliations

  1. Japan Advanced Institute of Science and Technology School of Information Science

Abstract

We investigate the relationship between M. De's empirical negation in Kripke and Beth Semantics. It turns out empirical negation, as well as co-negation, corresponds to different logics under different semantics. We then establish the relationship between logics related to these negations under unified syntax and semantics based on R. Sylvan's CCω.

Keywords

empirical negation, co-negation, Beth semantics, Kripke semantics, intuitionism

Bibliography

  1. L. E. J. Brouwer, Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlossenen Dritten. Zweiter Teil, [in:] A. Heyring (ed.), L.E.J. Brouwer Collected Works 1: Philosophy and Foundations of Mathematics, North-Holland (1975), pp. 191–221, DOI: http://dx.doi.org/10.1016/C2013-0-11893-4
  2. J. L. Castiglioni, R. C. E. Biraben, Strict paraconsistency of truth-degree preserving intuitionistic logic with dual negation, Logic Journal of the IGPL, vol. 22(2) (2014), pp. 268–273, DOI: http://dx.doi.org/10.1093/jigpal/jzt027
  3. M. De, Empirical Negation, Acta Analytica, vol. 28 (2013), pp. 49–69, DOI: http://dx.doi.org/10.1007/s12136-011-0138-9
  4. M. De, H. Omori, More on Empirical Negation, [in:] R. Goreé, B. Kooi, A. Kurucz (eds.), Advances in Modal Logic, vol. 10, College Publications (2014), pp. 114–133.
  5. K. Došen, Negation on the Light of Modal Logic, [in:] D. M. Gabbay, H. Wansing (eds.), What is Negation?, Kluwer Academic Publishing. (1999), DOI: http://dx.doi.org/10.1007/978-94-015-9309-04
  6. T. M. Ferguson, Extensions of Priest-da Costa Logic, Studia Logica, vol. 102 (2013), pp. 145–174, DOI: http://dx.doi.org/10.1007/s11225-013-9469-4
  7. A. B. Gordienko, A Paraconsistent Extension of Sylvan's Logic, Algebra and Logic, vol. 46(5) (2007), pp. 289–296, DOI: http://dx.doi.org/10.1007/s10469-007-0029-8
  8. A. Heyting, Intuitionism: An Introduction, third revised ed., North Holland (1976).
  9. M. Osorio, J. L. Carballido, C. Zepeda, J. A. Castellanos, Weakening and Extending Z, Logica Universalis, vol. 9(3) (2015), pp. 383–409, DOI: http://dx.doi.org/10.1007/s11787-015-0128-6
  10. M. Osorio, J. A. C. Joo, Equivalence among RC-type paraconsistent logics, Logic Journal of the IGPL, vol. 25(2) (2017), pp. 239–252, DOI: http://dx.doi.org/10.1093/jigpal/jzw065
  11. G. Priest, Dualising Intuitionistic Negation, Principia, vol. 13(2) (2009), pp. 165–184, DOI: http://dx.doi.org/10.5007/1808-1711.2009v13n2p165
  12. C. Rauszer, A formalization of the propositional calculus of H-B logic, Studia Logica, vol. 33(1) (1974), pp. 23–34, DOI: http://dx.doi.org/10.1007/BF02120864
  13. C. Rauszer, Applications of Kripke models to Heyting-Brouwer logic, Studia Logica, vol. 36(1) (1977), pp. 61–71, DOI: http://dx.doi.org/10.1007/BF02121115
  14. G. Restall, Extending intuitionistic logic with subtraction (1997), unpublished.
  15. R. Sylvan, Variations on da Costa C Systems and dual-intuitionistic logics I. Analyses of Cω and CCω, Studia Logica, vol. 49(1) (1990), pp. 47–65, DOI: http://dx.doi.org/10.1007/BF00401553
  16. A. S. Troelstra, J. R. Moschovakis, A.S. Troelstra, D. van Dalen, Constructivism in Mathematics Corrections, URL: https://www.math.ucla.edu/~joan/ourTvDcorr030818 [accessed 20/Jul/2020].
  17. A. S. Troelstra, D. van Dalen, Constructivism in Mathematics: An Introduction, vol. I, Elsevier (1988).
  18. A. S. Troelstra, D. van Dalen, Constructivism in Mathematics: An Introduction, vol. II, Elsevier (1988).
  19. D. van Dalen, L.E.J. Brouwer: Topologist, Intuitionist, Philosopher, Springer (2013), DOI: http://dx.doi.org/10.1007/978-1-4471-4616-2
Pages:
231-253
Main language of publication
English
Published
2020-11-04
Published online
2020-11-04
Humanities
Exact and natural sciences