ArticleOriginal scientific text
Title
Completeness, Categoricity and Imaginary Numbers: The Debate on Husserl
Authors
Abstract
Husserl's two notions of "definiteness" enabled him to clarify the problem of imaginary numbers. The exact meaning of these notions is a topic of much controversy. A "definite" axiom system has been interpreted as a syntactically complete theory, and also as a categorical one. I discuss whether and how far these readings manage to capture Husserl's goal of elucidating the problem of imaginary numbers, raising objections to both positions. Then, I suggest an interpretation of "absolute definiteness" as semantic completeness and argue that this notion does not suffice to explain Husserl's solution to the problem of imaginary numbers.
Keywords
Husserl, completeness, categoricity, relative and absolute definiteness, imaginary numbers