PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 74 | 2 |
Tytuł artykułu

Cullis-Radić determinant of a rectangular matrix which has a number of identical columns

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we present how identical columns affect the Cullis-Radić determinant of an \(m\times n\) matrix, where \(m\leq n\).
Rocznik
Tom
74
Numer
2
Opis fizyczny
Daty
wydano
2020
online
2020-12-28
Twórcy
Bibliografia
  • Amiri, A., Fathy, M., Bayat, M., Generalization of some determinantal identities for non-square matrices based on Radić’s definition, TWMS J. Pure Appl. Math. 1 (2) (2010), 163–175.
  • Arunkumar, M., Murthy, S., Ganapathy, G., Determinant for non-square matrices, Int. J. Math. Sci. Eng. Appl. 5 (5) (2011), 389–401.
  • Buraczewski, A., Generalization of formulae of Fredholm type and determinant theory for rectangular matrices, Panamer. Math. J. 1 (2) (1991), 49–66.
  • Cullis, C. E., Matrices and Determinoids, Vol. 1, Cambridge University Press, Cambridge, 1913.
  • Joshi, V. N., A determinant for rectangular matrices, Bull. Austral. Math. Soc. 21 (1) (1980), 137–146.
  • Makarewicz, A., Pikuta, P., Szałkowski, D., Properties of the determinant of a rectangular matrix, Ann. Univ. Mariae Curie-Skłodowska Sect. A 68 (1) (2014), 31–41.
  • Makarewicz, A., Mozgawa, W., Pikuta, P., Volumes of polyhedra in terms of determinants of rectangular matrices, Bull. Soc. Sci. Lett. Łódz Ser. Rech. Deform. 66 (2) (2016), 105–117.
  • Nakagami, Y., Yanai, H., On Cullis’ determinant for rectangular matrices, Linear Algebra Appl. 422 (2–3) (2007), 422–441.
  • Pyle, H. R., Non-square determinants and multilinear vectors, Math. Mag. 35 (2) (1962), 65–69.
  • Radić, M., A generalization of the determinant of a square matrix and some of its applications in geometry, Matematika (Zagreb) 20 (2) (1991), 19–36 (Serbo-Croatian).
  • Radić, M., A definition of determinant of rectangular matrix, Glas. Mat. Ser. III 1(21) (1966), 17–22.
  • Radić, M., About a determinant of rectangular 2 x n matrix and its geometric interpretation, Beitrage Algebra Geom. 46 (2) (2005), 321–349.
  • Radić, M., Areas of certain polygons in connection with determinants of rectangular matrices, Beitrage Algebra Geom. 49 (1) (2008), 71–96.
  • Radić, M., Certain equalities and inequalities concerning polygons in R2, Beitrage Algebra Geom. 50 (1) (2009), 235–248.
  • Radić, M., Susanj, R., An application of the determinant of a rectangular matrix in discovering some properties of the pentagon, Glas. Mat. Ser. III 27(47) (2) (1992), 217–226.
  • Radić, M., Susanj, R., On determinants of rectangular matrices which have Laplace’s expansion along rows, Glas. Mat. Ser. III 47(67) (1) (2012), 175–180.
  • Radić, M., Susanj, R., Trinajstic, N., Certain classes of polygons in R2 and areas of polygons, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 16(503) (2009), 7–12.
  • Stojakovic, M., Determinant of non-square matrix, Bull. Soc. Math. Phys. Serbie 4 (1952), 9–23 (Serbo-Croatian).
  • Sudhir, A. P., On the determinant-like function and the vector determinant, Adv. Appl. Clifford Algebr. 24 (3) (2014), 805–807.
  • Susanj, R., Radic, M., Geometrical meaning of one generalization of the determinant of a square matrix, Glas. Mat. Ser. III 29(49) (2) (1994), 217–233.
  • Yanai, H., Takane, Y., Ishii, H., Nonnegative determinant of a rectangular matrix: Its definition and applications to multivariate analysis, Linear Algebra Appl. 417 (1) (2006), 259–274.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ojs-doi-10_17951_a_2020_74_2_41-60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.