PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 74 | 1 |
Tytuł artykułu

On the complex q-Appell polynomials

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this article is to generalize the ring of \(q\)-Appell polynomials to the complex case. The formulas for \(q\)-Appell polynomials thus appear again, with similar names, in a purely symmetric way. Since these complex \(q\)-Appell polynomials are also \(q\)-complex analytic functions, we are able to give a first example of the \(q\)-Cauchy-Riemann equations. Similarly, in the spirit of Kim and Ryoo, we can define \(q\)-complex Bernoulli and Euler polynomials. Previously, in order to obtain the \(q\)-Appell polynomial, we would make a \(q\)-addition of the corresponding \(q\)-Appell number with \(x\). This is now replaced by a \(q\)-addition of the corresponding \(q\)-Appell number with two infinite function sequences \(C_{\nu,q}(x,y)\) and \(S_{\nu,q}(x,y)\) for the real and imaginary part of a new so-called \(q\)-complex number appearing in the generating function. Finally, we can prove \(q\)-analogues of the Cauchy-Riemann equations.
Rocznik
Tom
74
Numer
1
Opis fizyczny
Daty
wydano
2020
online
2020-10-20
Twórcy
autor
Bibliografia
  • Brinck, I., Persson, A., Elementar teori for analytiska funktioner (Swedish) (Elementary theory for analytic functions), Lund, 1979.
  • Ernst, T., A Comprehensive Treatment of q-calculus, Birkhauser, Basel, 2012.
  • Ernst T., A new semantics for special functions, to appear.
  • Kim, T., Ryoo, C. S., Some identities for Euler and Bernoulli polynomials and their zeros, Axioms 7 (3), 56 (2018), pp. 19.
  • Kim, D., A note on the degenerate type of complex Appell polynomials, Symmetry 11 (11), 1339 (2019), pp. 14.
  • Range, R., Holomorphic Functions and Integral Representations in Several Complex Variables, Springer-Verlag, New York, 1986.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ojs-doi-10_17951_a_2020_74_1_31-43
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.