PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 73 | 2 |
Tytuł artykułu

Coefficient body for nonlinear resolvents

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is devoted to the study of families of so-called nonlinear resolvents. Namely, we construct polynomial transformations which map the closed unit polydisks onto the coefficient bodies for the resolvent families. As immediate applications of our results we present a covering theorem and a sharp estimate for the Schwarzian derivative at zero on the class of resolvents.
Rocznik
Tom
73
Numer
2
Opis fizyczny
Daty
wydano
2019
online
2020-01-16
Twórcy
Bibliografia
  • Berkson, E., Porta, H., Semigroups of analytic functions and composition operators, Michigan Math. J. 25 (1978), 101–115.
  • Comtet, L., Advanced Combinatorics, D. Reidel Publishing Co., Dordrecht, 1974.
  • Efraimidis, I., Vukotic, D., Applications of Livingston-type inequalities to the generalized Zalcman functional, Math. Nachr. 291 (2018), 1502–1513.
  • Elin, M., Shoikhet, D., Linearization Models for Complex Dynamical Systems. Topics in univalent functions, functions equations and semigroup theory, Birkhauser, Basel, 2010.
  • Elin, M., Shoikhet, D., Sugawa, T., Geometric properties of the nonlinear resolvent of holomorphic generators, J. Math. Anal. Appl. 483 (2020), Art. 123614.
  • Faa di Bruno, F., Sullo sviluppo delle Funzioni, Annali di Scienze Matematiche e Fisiche 6 (1855), 479–480.
  • Frabetti, A., Manchon, D., Five interpretations of Faa di Bruno’s formula, IRMA Lect. in Math. and Theor. Phys. 21 (K. Ebrahimi-Fard and F. Fauvet, eds.), Europ. Math. Soc. (2015), 91–148.
  • Kim, S.-A., Sugawa, T., Invariant differential operators associated with a conformal metric, Michigan Math. J. 55 (2007), 459–479.
  • Li, M., Sugawa, T., Schur parameters and the Caratheodory class, Results in Mathematics, accepted for publication.
  • Ma, W., Minda, D., Hyperbolically convex functions, Ann. Math. Polon. 60 (1994), 81–100.
  • Reich, S., Shoikhet, D., Metric domains, holomorphic mappings and nonlinear semigroups, Abstr. Appl. Anal. 3 (1998), 203–228.
  • Reich, S., Shoikhet, D., Nonlinear Semigroups, Fixed Points, and the Geometry of Domains in Banach Spaces, World Scientific Publisher, Imperial College Press, London, 2005.
  • Riordan, J., Combinatorial Identities, Robert E. Krieger Publishing Co., Huntington, NY, 1979.
  • Schur, I., Methods in Operator Theory and Signal Processing, Operator Theory: Adv. and Appl. 18, Birkhauser Verlag, 1986.
  • Shoikhet, D., Semigroups in Geometrical Function Theory, Kluwer, Dordrecht, 2001.
  • Simon, B., Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory, Colloquium Publications, Amer. Math. Society, 2005.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ojs-doi-10_17951_a_2019_73_2_45-57
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.