PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 73 | 1 |
Tytuł artykułu

Admissible classes of multivalent functions associated with an integral operator

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we investigate some applications of the differential subordination and superordination of classes of admissible functions associated with an integral operator. Additionally, differential sandwich-type results are obtained.
Rocznik
Tom
73
Numer
1
Opis fizyczny
Daty
wydano
2019
online
2019-12-19
Twórcy
Bibliografia
  • Aghalary, R., Ali, R. M., Joshi, S. B., Ravichandran, V., Inequalities for analytic functions defined by certain linear operator, Internat. J. Math. Sci. 4 (2) (2005), 267–274.
  • Ali, R. M., Ravichandran, V., Seenivasagan, N., Differential subordination and superodination of analytic functions defined by the multiplier transformation, Math. Inequal. Appl. 12 (1) (2009), 123–139.
  • Aouf, M. K., Inequalities involving certain integral operator, J. Math. Inequal. 2 (2) (2008), 537–547.
  • Aouf, M. K., Hossen, H. M., Lashin, A. Y., An application of certain integral operators, J. Math. Anal. Appl. 248 (2) (2000), 475–481.
  • Aouf, M. K., Seoudy, T. M., Differential subordination and superordination of analytic functions defined by an integral operator, European J. Pure Appl. Math. 3 (1) (2010), 26–44.
  • Aouf, M. K., Seoudy, T. M., Differential subordination and superordination of analytic functions defined by certain integral operator, Acta Univ. Apulensis 24 (2010), 211–229.
  • Bulboaca, T., Differential Subordinations and Superordinations. Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
  • Kim, Y. C., Srivastava, H. M., Inequalities involving certain families of integral and convolution operators, Math. Inequal. Appl. 7 (2) (2004), 227–234.
  • Jung, T. B., Kim, Y. C., Srivastava, H. M., The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl. 176 (1993), 138–147.
  • Miller, S. S., Mocanu, P. T., Differential Subordinations: Theory and Applications, Marcel Dekker, New York–Basel, 2000.
  • Miller, S. S., Mocanu, P. T., Subordinants of differential superordinations, Complex Var. Theory Appl. 48 (10) (2003), 815–826.
  • Shams, S., Kulkarni, S. R., Jahangir, Jay M., Subordination properties for p-valent functions defined by integral operators, Internat. J. Math. Math. Sci. Vol. 2006, Article ID 94572, 1–3.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ojs-doi-10_17951_a_2019_73_1_57-73
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.