PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 73 | 1 |
Tytuł artykułu

Additive inequalities for weighted harmonic and arithmetic operator means

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we establish some new upper and lower bounds for the difference between the weighted arithmetic and harmonic operator means under various assumptions for the positive invertible operators A, B. Some applications when A, B are bounded above and below by positive constants are given as well.
Rocznik
Tom
73
Numer
1
Opis fizyczny
Daty
wydano
2019
online
2019-12-19
Twórcy
Bibliografia
  • Dragomir, S. S., Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. 74 (3) (2006), 417–478.
  • Dragomir, S. S., A note on Young’s inequality, Rev. R. Acad. Cienc. Exactas Fıs. Nat. Ser. A Mat. RACSAM 111 (2) (2017), 349–354.
  • Dragomir, S. S., Some new reverses of Young’s operator inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 130. http://rgmia.org/papers/v18/v18a130.pdf
  • Dragomir, S. S., On new refinements and reverses of Young’s operator inequality, Transylv. J. Math. Mech. 8 (1) (2016), 45–49.
  • Dragomir, S. S., Some inequalities for operator weighted geometric mean, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 139. http://rgmia.org/papers/v18/v18a139.pdf
  • Dragomir, S. S., Some reverses and a refinement of H¨older operator inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 147. http://rgmia.org/papers/v18/v18a147.pdf
  • Dragomir, S. S., Some inequalities for weighted harmonic and arithmetic operator means, Fasc. Math. No. 61 (2018), 43–54.
  • Furuichi, S., Refined Young inequalities with Specht’s ratio, J. Egyptian Math. Soc. 20 (2012), 46–49.
  • Furuichi, S., On refined Young inequalities and reverse inequalities, J. Math. Inequal. 5 (2011), 21–31.
  • Liao, W., Wu, J., Zhao, J., New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, Taiwanese J. Math. 19 (2) (2015), 467–479.
  • Tominaga, M., Specht’s ratio in the Young inequality, Sci. Math. Japon. 55 (2002), 583–588.
  • Zuo, G., Shi, G., Fujii, M., Refined Young inequality with Kantorovich constant, J. Math. Inequal. 5 (2011), 551–556.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ojs-doi-10_17951_a_2019_73_1_1-17
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.