ArticleOriginal scientific text

Title

On the Courant bracket on couples of vector fields and p-forms

Authors , ,

Abstract

If mp+12 (or m=p3), all  natural bilinear  operators A transforming pairs of couples of vector fields and p-forms on m-manifolds M into couples of vector fields and p-forms on M are described. It is observed that  any natural skew-symmetric bilinear operator A as above coincides with the generalized Courant bracket up to three (two, respectively) real constants.

Keywords

Natural operator, vector field, p-form

Bibliography

  1. Coimbra, A., Minasian, R., Triendl, H.,Waldram, D., Generalized geometry for string corrections, J. High Energy Phys. 2014 (11) (2014), 160.
  2. Courant, T. J., Dirac manifolds, Trans. Amer. Math. Soc. 319 (2) (1990), 631-661.
  3. Doupovec, M., Kurek, J., Lifts of tensor fields to the cotangent bundle, in: Differential Geometry and Applications (Brno, 1995), Masaryk University, Brno, 1996, 141-150.
  4. Doupovec, M., Kurek, J., Mikulski, W. M., The natural brackets on couples of vector fields and 1-forms, Turkish J. Math. 42 (4) (2018), 1853-1862.
  5. Dębecki, J., Linear liftings of skew symmetric tensor fields of type (1,2) to Weil bundles, Czechoslovak Math. J. 60(135) (4) (2010), 933-943.
  6. Gualtieri, M., Generalized complex geometry, Ann. of Math. (2) 174 (1) (2011), 75-123.
  7. Hitchin, N., Generalized Calabi-Yau manifolds, Q. J. Math. 54 (3) (2003), 281-308.
  8. Kolar, I., Michor, P. W., Slovak, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.
  9. Kurek, J., Mikulski, W. M., The natural linear operators TTT(r), Colloq. Math. 95 (1) (2003), 37-47.
  10. Mikulski, W. M., Liftings of 1-forms to the linear r-tangent bundle, Arch. Math. (Brno) 31 (2) (1995), 97-111.
Main language of publication
English
Published
2018
Published online
2018-12-22
Exact and natural sciences