ArticleOriginal scientific text

Title

An existence and approximation theorem for solutions of degenerate nonlinear elliptic equations

Authors

Abstract

The main result establishes that a weak solution of degenerate nonlinear  elliptic equations can be approximated by a sequence of solutions for non-degenerate nonlinear elliptic equations.

Keywords

Degenerate nonlinear elliptic equations, weighted Sobolev spaces

Bibliography

  1. Cavalheiro, A. C., An approximation theorem for solutions of degenerate elliptic equations, Proc. Edinb. Math. Soc. 45 (2002), 363-389.
  2. Fabes, E., Kenig, C., Serapioni, R., The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), 77-116.
  3. Fernandes, J. C., Franchi, B., Existence and properties of the Green function for a class of degenerate parabolic equations, Rev. Mat. Iberoam. 12 (1996), 491-525.
  4. Garcıa-Cuerva, J., Rubio de Francia, J. L., Weighted Norm Inequalities and Related Topics, North-Holland Publishing Co., Amsterdam, 1985.
  5. Heinonen, J., Kilpelainen, T., Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, Oxford, 1993.
  6. Kufner, A., Weighted Sobolev Spaces, John Wiley & Sons, New York, 1985.
  7. Muckenhoupt, B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
  8. Murthy, M. K. V., Stampacchia, G., Boundary value problems for some degenerate elliptic operators, Ann. Mat. Pura Appl. 80 (1) (1968), 1-122.
  9. Torchinsky, A., Real-Variable Methods in Harmonic Analysis, Academic Press, San Diego, 1986.
  10. Turesson, B. O., Nonlinear Potential Theory and Weighted Sobolev Spaces, Springer-Verlag, Berlin, 2000.
  11. Zeidler, E., Nonlinear Functional Analysis and Its Applications. Vol. II/B, Springer-Verlag, New York, 1990.
Main language of publication
English
Published
2018
Published online
2018-06-25
Exact and natural sciences