PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 72 | 1 |
Tytuł artykułu

Oscillation of third-order delay difference equations with negative damping term

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to investigate the oscillatory and asymptotic behavior of solutions of a third-order delay difference equation. By using comparison theorems, we deduce oscillation of the difference equation from its relation to certain associated first-order delay difference equations or inequalities. Examples are given to illustrate the main results.
Rocznik
Tom
72
Numer
1
Opis fizyczny
Daty
wydano
2018
online
2018-06-25
Bibliografia
  • Agarwal, R. P., Difference Equations and Inequalities. Theory, Methods, and Applications, Marcel Dekker, Inc., New York, 2000.
  • Agarwal, R. P., Bohner, M., Grace, S. R., O’Regan, D., Discrete Oscillation Theory, Hindawi Publishing Corporation, New York, 2005.
  • Agarwal R. P., Grace, S. R., Oscillation of certain third-order difference equations, Comput. Math. Appl. 42 (3-5) (2001), 379-384,
  • Agarwal, R. P., Grace, S. R., O’Regan, D., On the oscillation of certain third-order difference equations, Adv. Difference Equ. 3 (2005), 345-367.
  • Aktas, M. F., Tiryaki, A., Zafer, A., Oscillation of third-order nonlinear delay difference equations, Turkish J. Math. 36 (3) (2012), 422-436.
  • Bohner, M., Dharuman, C., Srinivasan, R., Thandapani, E., Oscillation criteria for third-order nonlinear functional difference equations with damping, Appl. Math. Inf. Sci. 11 (3) (2017), 669-676.
  • Grace, S. R., Agarwal, R. P., Graef J. R., Oscillation criteria for certain third order nonlinear difference equations, Appl. Anal. Discrete Math. 3 (1) (2009), 27-38.
  • Graef, J. R., Thandapani, E., Oscillatory and asymptotic behavior of solutions of third order delay difference equations, Funkcial. Ekvac. 42 (3) (1999), 355-369.
  • Gyori, I., Ladas, G., Oscillation Theory of Delay Differential Equations. With Applications, The Clarendon Press, Oxford University Press, New York, 1991,
  • Parhi, N., Panda, A., Oscillatory and nonoscillatory behaviour of solutions of difference equations of the third order, Math. Bohem. 133 (1) (2008), 99-112.
  • Saker, S. H., Alzabut, J. O., Mukheimer, A., On the oscillatory behavior for a certain class of third order nonlinear delay difference equations, Electron. J. Qual. Theory Differ. Equ. 67 (2010), 16 pp.
  • Smith, B., Oscillation and nonoscillation theorems for third order quasi-adjoint difference equations, Portugal. Math. 45 (3) (1988), 229-243.
  • Smith, B., Taylor, Jr., W. E., Nonlinear third-order difference equations: oscillatory and asymptotic behavior, Tamkang J. Math. 19 (3) (1988), 91-95.
  • Tang, X., Liu, Y., Oscillation for nonlinear delay difference equations, Tamkang J. Math. 32 (4) (2001), 275-280.
  • Thandapani, E., Mahalingam, K., Oscillatory properties of third order neutral delay difference equations, Demonstratio Math. 35 (2) (2002), 325-337.
  • Thandapani, E., Pandian, S., Balasubramaniam, R. K., Oscillatory behavior of solutions of third order quasilinear delay difference equations, Stud. Univ. Zilina Math. Ser. 19 (1) (2005), 65-78.
  • Thandapani, E., Selvarangam, S., Oscillation theorems for second order quasilinear neutral difference equations, J. Math. Comput. Sci. 2 (4) (2012), 866-879.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ojs-doi-10_17951_a_2018_72_1_19-28
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.