ArticleOriginal scientific text

Title

On almost polynomial structures from classical linear connections

Authors

Abstract

Let Mfm be the category of m-dimensional manifolds and local diffeomorphisms and let T be the tangent functor on Mfm. Let V be the category of real vector spaces and linear maps and let  Vm be the category of  m-dimensional real vector spaces and linear isomorphisms. Let w be a polynomial in one variable with real coefficients. We describe all regular covariant functors F:VmV admitting Mfm-natural operators P~ transforming classical linear connections on m-dimensional manifolds M into almost polynomial w-structures  P~() on F(T)M=xMF(TxM).

Keywords

Classical linear connection, almost polynomial structure, Weil bundle, natural operator

Bibliography

  1. Kaneyuki, S., Kozai, M., Paracomplex structures and affine symmetric spaces, Tokyo J. Math. 8 (1) (1985), 81-98.
  2. Kobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol I, Interscience Publisher, New York-London, 1963.
  3. Kolar, I., Michor, P. W., Slovak, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.
  4. Kurek, J., Mikulski, W. M., On lifting of connections to Weil bundles, Ann. Polon. Math. 103 (3) (2012), 319-324.
  5. Kurek, J., Mikulski, W. M., On almost complex structures from classical linear connections, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 71 (1) (2017), 55-60.
  6. Libermann, P., Sur les structures presque paracomplexes, C. R. Acad. Sci. Paris 234 (1952), 2517-2519.
  7. Libermann, P., Sur le probleme d’equivalence de certaines structures infinitesimales, Ann. Mat. Pura Appl. 36 (1954), 27-120.
Main language of publication
English
Published
2018
Published online
2018-06-25
Exact and natural sciences