ArticleOriginal scientific text

Title

Note about sequences of extrema (A,2B)-edge coloured trees

Authors ,

Abstract

In this paper we determine successive extremal trees with respect to the number of all (A,2B)-edge colourings.

Keywords

Edge colouring, trees, Fibonacci numbers, telephone numbers

Bibliography

  1. Bednarz, U., Włoch, I., Fibonacci and telephone numbers in extremal trees, Discuss. Math. Graph Theory, doi 10.7151/dmgt.1997, in press.
  2. Bednarz, U., Włoch, I., Wołowiec-Musiał, M., Total graph interpretation of numbers of the Fibonacci type, J. Appl. Math. 2015 (2015), ID 837917, 7 pp.
  3. Bednarz, U., Bród, D., Szynal-Liana, A., Włoch, I., Wołowiec-Musiał, M., On Fibonacci numbers in edge coloured trees, Opuscula Math. 37 (4) (2017), 479-490.
  4. Diestel, R., Graph Theory, Springer-Verlag, Heidelberg, New York, 2005.
  5. Gutman, I., Wagner, S., Maxima and minima of the Hosoya index and the Merrifield-Simmons index. A survey of results and techniques, Acta Appl. Math. 112 (3) (2010), 323-346.
  6. Prodinger, H., Tichy, R. F., Fibonacci numbers of graphs, Fibonacci Quart. 20 (1982), 16-21.
  7. Riordan, J., Introduction to Combinatorial Analysis, Dover Publ., Inc., New York, 2002.
  8. Tichy, R. F., Wagner, S., Extremal problems for topological indices in combinatorial chemistry, J. Comput. Biol. 12 (7) (2005), 1004-1013.
  9. Weisstein, E., Tripod index entries for linear recurrence with constant coefficients, MathWorld, Wolfram Web Resource, Mar. 05 2011, URL http://mathworld.wolfram.com/Tripod.html
  10. The On-Line Encyclopedia of Integer Sequences, URL https://oeis.org/
Main language of publication
English
Published
2017
Published online
2017-12-18
Exact and natural sciences