ArticleOriginal scientific text

Title

Periodic solutions of Euler-Lagrange equations with sublinear potentials in an Orlicz-Sobolev space setting

Authors ,

Abstract

In this paper, we obtain existence results of periodic solutions of hamiltonian systems in the Orlicz-Sobolev space W1LΦ([0,T]). We employ the direct method of calculus of variations and we consider  a potential  function F satisfying the inequality |F(t,x)|b1(t)Φ0(|x|)+b2(t), with b1,b2L1 and  certain N-functions Φ0.

Keywords

Periodic solution, Orlicz-Sobolev spaces, Euler-Lagrange, N-function, critical points

Bibliography

  1. Acinas, S., Buri, L., Giubergia, G., Mazzone, F., Schwindt, E., Some existence results on periodic solutions of Euler-Lagrange equations in an Orlicz-Sobolev space setting, Nonlinear Anal. 125 (2015), 681-698.
  2. Adams, R., Fournier, J., Sobolev Spaces, Elsevier/Academic Press, Amsterdam, 2003.
  3. Conway, J. B., A Course in Functional Analysis, Springer, New York, 1985.
  4. Fiorenza, A., Krbec, M., Indices of Orlicz spaces and some applications, Comment. Math. Univ. Carolin. 38 (3) (1997), 433-452.
  5. Gustavsson, J., Peetre, J., Interpolation of Orlicz spaces, Studia Math. 60 (1) (1977), 33-59, URL http://eudml.org/doc/218150
  6. Hudzik, H., Maligranda, L., Amemiya norm equals Orlicz norm in general, Indag. Math. (N.S.) 11 (4) (2000), 573-585.
  7. Krasnoselskiı, M. A., Rutickiı, J. B., Convex Functions and Orlicz Spaces, P. Noordhoff Ltd., Groningen, 1961.
  8. Maligranda, L., Orlicz Spaces and Interpolation, Vol. 5 of Seminarios de Matematica [Seminars in Mathematics], Universidade Estadual de Campinas, Departamento de Matematica, Campinas, 1989.
  9. Mawhin, J., Willem, M., Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989.
  10. Rao, M. M., Ren, Z. D., Theory of Orlicz Spaces, Marcel Dekker, Inc., New York, 1991.
  11. Tang, C.-L., Periodic solutions of non-autonomous second-order systems with γ-quasisubadditive potential, J. Math. Anal. Appl. 189 (3) (1995), 71-675.
  12. Tang, C.-L., Periodic solutions for nonautonomous second order systems with sublinear nonlinearity, Proc. Amer. Math. Soc. 126 (11) (1998), 3263-3270.
  13. Tang, C. L.,Wu, X.-P., Periodic solutions for second order systems with not uniformly coercive potential, J. Math. Anal. Appl. 259 (2) (2001), 386-397.
  14. Tang, X., Zhang, X., Periodic solutions for second-order Hamiltonian systems with a p-Laplacian, Ann. Univ. Mariae Curie-Skłodowska Sect. A 64 (1) (2010), 93-113.
  15. Tian, Y., Ge, W., Periodic solutions of non-autonomous second-order systems with a p-Laplacian, Nonlinear Anal. 66 (1) (2007), 192-203.
  16. Wu, X.-P., Tang, C.-L., Periodic solutions of a class of non-autonomous second-order systems, J. Math. Anal. Appl. 236 (2) (1999), 227-235.
  17. Xu, B., Tang, C.-L., Some existence results on periodic solutions of ordinary p-Laplacian systems, J. Math. Anal. Appl. 333 (2) (2007), 1228-1236.
  18. Zhao, F., Wu, X., Periodic solutions for a class of non-autonomous second order systems, J. Math. Anal. Appl. 296 (2) (2004), 422-434.
  19. Zhao, F., Wu, X., Existence and multiplicity of periodic solution for non-autonomous second-order systems with linear nonlinearity, Nonlinear Anal. 60 (2) (2005), 325-335.
  20. Zhu, K., Analysis on Fock Spaces, Springer, New York, 2012.
Main language of publication
English
Published
2017
Published online
2017-12-18
Exact and natural sciences