ArticleOriginal scientific text

Title

The Riemann-Cantor uniqueness theorem for unilateral trigonometric series via a special version of the Lusin-Privalov theorem

Authors

Abstract

Using Baire's theorem, we give a very simple proof of a special version of the Lusin-Privalov theorem and deduce via Abel's  theorem the  Riemann-Cantor theorem on the uniqueness of the coefficients of pointwise convergent unilateral trigonometric series.

Keywords

Boundary behaviour of analytic functions, trigonometric series

Bibliography

  1. Cima, J., Ross, W., The Backward Shift on the Hardy Space, AMS, Providence, 2000.
  2. Fatou, P., Series trigonometriques et series de Taylor, Acta Math. 30 (1906), 335-400.
  3. Kechris, A. S., Set theory and uniqueness for trigonometric series, Preprint 1997. http://www.math.caltech.edu/ kechris/papers/uniqueness.pdf
  4. Riesz, F., Riesz, M., Uber die Randwerte einer analytischen Funktion, Quatrieme Congres des Math. Scand. (1916), 27-44,
  5. Lusin, N., Privaloff, J., Sur l’unicite et la multiplicite des fonctions analytiques, Ann. Sci. ENS 42 (1925), 143-191.
  6. Rudin, W., Real and Complex Analysis, third edition, McGraw-Hill, New York, 1986.
  7. Zygmund, A., Trigonometric Series, second edition, Vol. I+II Combined, Cambridge Math. Lib. 1959 and 1993.
Main language of publication
English
Published
2017
Published online
2017-06-30
Exact and natural sciences