ArticleOriginal scientific text

Title

Convolution conditions for bounded α-starlike functions of complex order

Authors

Abstract

Let A be the class of analytic functions in the unit disc U of the complex plane C with the normalization f(0)=f(0)1=0. We introduce a subclass SM(α,b) of A, which unifies the classes of bounded starlike and convex functions of complex order. Making use of Salagean operator, a more general class SM(n,α,b) (n0) related to SM(α,b) is also considered under the same conditions. Among other things, we find convolution conditions for a function fA to belong to the class SM(α,b). Several properties of the class SM(n,α,b) are investigated.

Keywords

Univalent functions, bounded starlike functions of complex order, bounded convex functions of complex order, α-starlike functions

Bibliography

  1. Aouf, M. K., Darwish, H. E., Attiya, A. A., On a class of certain analytic functions of complex order, Indian J. Pure Appl. Math. 32 (10) (2001), 1443-1452.
  2. El-Ashwah, R. M., Some convolution and inclusion properties for subclasses of bounded univalent functions of complex order, Thai J. Math. 12 (2) (2014), 373-384.
  3. Goodman, A. W., Univalent Functions, Vol. I, II, Tampa, Florida, 1983.
  4. Kulshrestha, P. K., Bounded Robertson functions, Rend. Mat. 6 (1) (1976), 137-150.
  5. Kulshrestha, P. K., Distortion of spiral-like mapping, Proc. Royal Irish Acad. 73A (1973) 1-5.
  6. Libera, R. J., Univalent λ-spiral functions, Canad. J. Mat. 19 (1967) 449-456.
  7. Nasr, M. A., Aouf, M. K., On convex functions of complex order, Mansoura Sci. Bull. 9 (1982), 565-582.
  8. Nasr, M. A., Aouf, M. K., Bounded convex functions of complex order, Mansoura Sci. Bull. 10 (1983), 513-526.
  9. Nasr, M. A., Aouf, M. K., Bounded starlike functions of complex order, Proc. Indian Acad. Sci. (Math. Sci.) 92 (2) (1983) 97-102.
  10. Nasr, M. A., Aouf, M. K., Starlike functions of complex order, J. Natur. Sci. Math. 25 (1985), 1-12.
  11. Padmanabhan, K. S., Ganesan, M. S., Convolution conditions for certain class of analytic functions, Indian J. Pure Appl. Math. 15 (1984), 777-780.
  12. Robertson, M. S., On the theory of univalent functions, Ann. of Math. 37 (1936), 374-408.
  13. Salagean, G. S., Subclasses of univalent functions, in: Complex Analysis – Fifth Romanian-Finnish Seminar (C. A. Cazacu, N. Boboc, M. Jurchescu, I. Suciu, eds.) Springer, Berlin–Heidelberg, 1983, 362-372.
  14. Silverman, H., Silvia, E. M., Telage, D., Convolution conditions for convexity and starlikeness and spiral-likeness, Math. Z. 162 (1978), 125-130.
  15. Sizuk, P. I., Regular functions f(z) for which zf(z) is λ-spirallike, Proc. Amer. Math. Soc. 49 (1975), 151-160.
  16. Singh, R., Singh, V., On a class of bounded starlike functions, Indian J. Pure Appl. Math. 5 (8) (1974), 733-754.
  17. Wiatrowski, P., The coefficient of a certain family of holomorphic functions, Zeszyty Nauk. Uniw. Łódz. Nauki Mat. Przyrod. Ser. II No. 39 Mat. (1971), 75-85.
Main language of publication
English
Published
2017
Published online
2017-06-30
Exact and natural sciences