ArticleOriginal scientific text

Title

Entire functions of exponential type not vanishing in the half-plane z>k, where k>0

Authors

Abstract

Let P(z) be a polynomial of degree n having no zeros in |z|<k, k1, and let Q(z):=znP(1/z). It was shown by Govil that if max|z|=1|P(z)| and max|z|=1|Q(z)| are attained at the same point of the unit circle |z|=1, then max|z|=1|P(z)|n1+knmax|z|=1|P(z)|.The main result of the present article is a generalization of Govil's polynomial inequality to a class of entire functions of exponential type.

Keywords

Inequalities, entire functions of exponential type, polynomial, trigonometric polynomial

Bibliography

  1. Besicovitch, A. S., Almost Periodic Functions, Cambridge University Press, London, 1932.
  2. Boas, R. P. Jr., Entire Functions, Academic Press, New York, 1954.
  3. Boas, R. P. Jr., Inequalities for asymmetric entire functions, Illinois J. Math. 3 (1957), 1-10.
  4. Bohr, H., Almost Periodic Functions, Chelsea Publishing Company, New York, 1947.
  5. van der Corput, J. G., Schaake G., Ungleichungen fur Polynome und trigonometrische Polynome, Composito Math. 2 (1935), 321-61.
  6. Govil, N. K., On a theorem of S. Bernstein, Proc. Nat. Acad. Sci. India 50 (A) (1980), 50-52.
  7. Levin, B. Ya., On a special class of entire functions and on related extremal properties of entire functions of finite degree, Izvestiya Akad. Nauk SSSR. Ser. Math. 14 (1950), 45-84 (Russian).
  8. Qazi, M. A., Rahman, Q. I., The Schwarz–Pick theorem and its applications, Ann. Univ. Mariae Curie-Skłodowska Sect. A 65 (2) (2011), 149-167.
  9. Rahman, Q. I., Schmeisser, G., Analytic Theory of Polynomials, Clarendon Press, Oxford, 2002.
  10. Riesz, M., Formule d’interpolation pour la derivee d’un polynome trigonometrique, C. R. Acad. Sci. Paris 158 (1914), 1152-1154.
Main language of publication
English
Published
2017
Published online
2017-06-30
Exact and natural sciences