ArticleOriginal scientific text

Title

On compactness and connectedness of the paratingent

Authors

Abstract

In this note we shall prove that for a continuous function φ:ΔRn, where ΔR,  the paratingent of φ at aΔ is a non-empty and compact set in Rn if and only if φ satisfies Lipschitz condition in a neighbourhood of a. Moreover, in this case the paratingent is a connected set.

Bibliography

  1. Aubin, J. P., Frankowska, H., Set-Valued Analysis, Birkhauser, Boston, Massachusetts, 1990.
  2. Bielecki, A., Sur certaines conditions necessaires et suffisantes pour l’unicite des solutions des systemes d’equations differentielles ordinaires et des equations au paratingent, Ann. Univ. Mariae Curie-Skłodowska Sect. A 2 (1948), 49-106.
  3. Bouligand, G., Introduction a la geometrie infinitesimale directe, Vuibert, Paris, 1932.
  4. Choquet, G., Outils topologiques et metriques de l’analyse mathematique, Centre de Documentation Univ., Course redige par C. Mayer, Paris, 1969.
  5. Fedor, M., Szyszkowska, J., Darboux properties of the paratingent, Ann. Univ. Mariae Curie-Skłodowska Sect. A 62 (2008), 67-74.
  6. Mirica, S., The contingent and the paratingent as generalized derivatives for vectorvalued and set-valued mappings, Nonlinear Anal. 6 (1982), 1335-1368.
Main language of publication
English
Published
2016
Published online
2016-12-24
Exact and natural sciences