ArticleOriginal scientific text
Title
On compactness and connectedness of the paratingent
Authors
Abstract
In this note we shall prove that for a continuous function , where , the paratingent of at is a non-empty and compact set in if and only if satisfies Lipschitz condition in a neighbourhood of . Moreover, in this case the paratingent is a connected set.
Bibliography
- Aubin, J. P., Frankowska, H., Set-Valued Analysis, Birkhauser, Boston, Massachusetts, 1990.
- Bielecki, A., Sur certaines conditions necessaires et suffisantes pour l’unicite des solutions des systemes d’equations differentielles ordinaires et des equations au paratingent, Ann. Univ. Mariae Curie-Skłodowska Sect. A 2 (1948), 49-106.
- Bouligand, G., Introduction a la geometrie infinitesimale directe, Vuibert, Paris, 1932.
- Choquet, G., Outils topologiques et metriques de l’analyse mathematique, Centre de Documentation Univ., Course redige par C. Mayer, Paris, 1969.
- Fedor, M., Szyszkowska, J., Darboux properties of the paratingent, Ann. Univ. Mariae Curie-Skłodowska Sect. A 62 (2008), 67-74.
- Mirica, S., The contingent and the paratingent as generalized derivatives for vectorvalued and set-valued mappings, Nonlinear Anal. 6 (1982), 1335-1368.