ArticleOriginal scientific text

Title

On (2-d)-kernels in the cartesian product of graphs

Authors ,

Abstract

In this paper we study the problem of the existence of (2-d)-kernels in the cartesian product of graphs. We give sufficient conditions for the existence of (2-d)-kernels in the cartesian product and also we consider the number of (2-d)-kernels.

Keywords

Independence, domination, cartesian product, (2-d)-kernel

Bibliography

  1. Bednarz, P., Hernandez-Cruz, C., Włoch, I., On the existence and the number of (2-d)-kernels in graphs, Ars Combin. 121 (2015), 341-351.
  2. Bednarz, P., Włoch, I., An algorithm determining (2-d)-kernels in trees, Util. Math., in print.
  3. Diestel, R., Graph Theory, Springer-Verlag, Heidelberg, New York, 2005.
  4. Galeana-Sanchez, H., Gomez, R., (k, l)-kernels, (k, l)-semikernels, k-Grundy functions and duality for state splittings, Discuss. Math. Graph Theory 27 (2007), 359-371.
  5. Galeana-Sanchez, H., Hernandez-Cruz, C., On the existence of k-kernels in digraphs and in weighted digraphs, AKCE Int. J. Graphs Comb. 7 (2) (2010), 201-215.
  6. Galeana-Sanchez, H., Hernandez-Cruz, C., k-kernels in generalizations of transitive digraphs, Discuss. Math. Graph Theory 31 (2) (2011), 293-312.
  7. Galeana-Sanchez, H., Hernandez-Cruz, C., Cyclically k-partite digraphs and k-kernels, Discuss. Math. Graph Theory 31 (1) (2011), 63-78.
  8. Galeana-Sanchez, H., Hernandez-Cruz, C., On the existence of (k, l)-kernels in infinite digraphs: A survey, Discuss. Math. Graph Theory 34 (3) (2014), 431-466.
  9. Galeana-Sanchez, H., Pastrana-Ramırez, L., Extending digraphs to digraphs with (without) k-kernel, Int. J. Contemp. Math. Sci. 3 (5) (2008), 229-243.
  10. Galeana-Sanchez, H., Pastrana-Ramırez, L., k-kernels in the orientation of the path graph, Int. J. Contemp. Math. Sci. 5 (5) (2010), 231-242.
  11. Galeana-Sanchez, H., Pastrana-Ramırez, L., A construction that preserves the number of k-kernels, Int. J. Contemp. Math. Sci. 6 (10) (2011), 491-502.
  12. Imrich, W., Klavzar, S., Rall, D. F., Topics in Graph Theory: Graphs and Their Cartesian Product, A. K. Peters Ltd., Wellesley Massachusetts, 2008.
  13. Kucharska, M., Kwasnik, M., On (k, l)-kernels of special superdigraphs of Pm and Cm, Discuss. Math. Graph Theory 21 (1) (2001), 95-109.
  14. Kwasnik, M., (k, l)-kernels in graphs and in their products, Ph.D. Dissertation, Wrocław, 1980.
  15. Szumny, W., Włoch, A., Włoch, I., On (k, l)-kernels in D-join of digraphs, Discuss. Math. Graph Theory 27 (2007), 457-470.
  16. Szumny, W., Włoch, A., Włoch, I., On the existence and on the number of (k, l)-kernels in the lexicographic product of graphs, Discrete Math. 308 (20) (2008), 4616-4624.
  17. Włoch, A., On 2-dominating kernels in graphs, Australas. J. Combin. 53 (2012), 273-284.
  18. Włoch, A., Włoch, I., On (k, l)-kernels in generalized products, Discrete Math. 164 (1997), 295-301.
  19. Włoch, A., Włoch, I., On (k, l)-kernels in the corona of digraphs, Int. J. Pure Appl. Math. 53 (4) (2009), 571-582.
Main language of publication
English
Published
2016
Published online
2016-12-24
Exact and natural sciences