PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 70 | 1 |
Tytuł artykułu

Third Hankel determinant for starlike and convex functions with respect to symmetric points

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this paper is to obtain best possible upper bound to the \(H_{3}(1)\)  Hankel determinant for starlike and convex functions with respect to symmetric points, using Toeplitz determinants.
Rocznik
Tom
70
Numer
1
Opis fizyczny
Daty
wydano
2016
online
2016-07-04
Twórcy
Bibliografia
  • Ali, R. M., Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc. (second series) 26 (1) (2003), 63-71.
  • Babalola, K. O., On \(H3(1)\) Hankel determinant for some classes of univalent functions, Inequality Theory and Applications 6 (2010), 1-7.
  • Das, R. N., Singh, P., On subclass of schlicht mappings, Indian J. Pure and Appl. Math. 8 (1977), 864-872.
  • Duren, P. L., Univalent Functions, Springer, New York, 1983.
  • Grenander, U., Szego, G., Toeplitz Forms and Their Applications, 2nd ed., Chelsea Publishing Co., New York, 1984.
  • Janteng, A., Halim, S. A., Darus, M., Hankel determinant for starlike and convex functions, Int. J. Math. Anal. (Ruse) 1 (13) (2007), 619-625.
  • Libera, R. J., Złotkiewicz, E. J., Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc. 87 (1983), 251-257.
  • Pommerenke, Ch., Univalent Functions, Vandenhoeck and Ruprecht, Gottingen, 1975.
  • Pommerenke, Ch., On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc. 41 (1966), 111-122.
  • Prithvipal Singh , A study of some subclasses of analytic functions in the unit disc, Ph.D. Thesis (1979), I.I.T. Kanpur.
  • Raja, M., Malik, S. N., Upper bound of third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli, J. Inq. Appl. (2013), vol. 2013.
  • RamReddy, T., A study of certain subclasses of univalent analytic functions, Ph.D. Thesis (1983), I.I.T. Kanpur.
  • RamReddy, T., Vamshee Krishna, D., Hankel determinant for starlike and convex functions with respect to symmetric points, J. Ind. Math. Soc. (N. S.) 79 (1-4) (2012), 161-171.
  • Ratanchand, Some aspects of functions analytic in the unit disc, Ph.D. Thesis (1978), I.I.T. Kanpur.
  • Sakaguchi, K., On a certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72-75.
  • Simon, B., Orthogonal Polynomials on the Unit Circle, Part 1. Classical Theory, American Mathematical Society, Providence (RI), 2005.
  • Vamshee Krishna, D., Venkateswarlu, B., RamReddy, T., Third Hankel determinant for certain subclass of p-valent functions, Complex Var. and Elliptic Eqns. 60 (9) (2015), 1301-1307.
  • Vamshee Krishna, D., RamReddy, T., Coefficient inequality for certain p-valent analytic functions, Rocky Mountain J. Math. 44 (6) (2014), 941-1959.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ojs-doi-10_17951_a_2016_70_1_37
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.