ArticleOriginal scientific text

Title

Hankel determinant for a class of analytic functions of complex order defined by convolution

Authors ,

Abstract

In this paper, we obtain the Fekete-Szego inequalities for the functions of complex order defined by convolution. Also, we find upper bounds for the second Hankel determinant |a2a4a32| for functions belonging to the class Sγb(g(z);A,B).

Keywords

Fekete-Szego inequality, second Hankel determinant, convolution, complex order.

Bibliography

  1. Abubaker, A., Darus, M., Hankel determinant for a class of analytic functions involving a generalized linear differential operator, Internat. J. Pure Appl. Math. 69 (3) (2011), 429-435.
  2. Al-Oboudi, F. M., On univalent functions defined by a generalized Salagean operator, Internat. J. Math. Math. Sci. 27 (2004), 1429-1436.
  3. Aouf, M. K., Subordination properties for a certain class of analytic functions defined by the Salagean operator, Appl. Math. Lett. 22 (2009), 1581-1585.
  4. Bansal, D., Upper bound of second Hankel determinant for a new class of analytic functions}, Appl. Math. Lett. 26 (1) (2013), 103-107.
  5. Bansal, D., Fekete-Szego problem and upper bound of second Hankel determinant for a new class of analytic functions, Kyungpook Math. J. 54 (2014), 443-452.
  6. Bulboaca, T., Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
  7. Catas, A., On certain classes of p-valent functions defined by multiplier transformations, in Proceedings of the International Symposium on Geometric Function Theory and Applications, (Istanbul, Turkey, August 2007), Istanbul, 2008, 241-250.
  8. Cho, N. E., Srivastava, H. M., Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modelling 37 (1-2) (2003), 39-49.
  9. Cho, N. E., Kim, T. H., Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc. 40 (3) (2003), 399-410.
  10. Duren, P. L., Univalent Functions, Springer-Verlag, New York, 1983.
  11. Dziok, J., Srivastava, H. M., Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), 1-13.
  12. Dziok, J., Srivastava, H. M., Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct. 14 (2003), 7-18.
  13. El-Ashwah, R. M., Aouf, M. K., Differential subordination and superordination for certain subclasses of p-valent functions, Math. Comput. Modelling 51 (2010), 349-360.
  14. El-Ashwah, R. M., Aouf, M. K., Some properties of new integral operator, Acta Univ. Apulensis 24 (2010), 51-61.
  15. Grenander, U., Szego, G., Toeplitz Forms and Their Application, Univ. of California Press, Berkeley, 1958.
  16. Janteng, A., Halim, S. A., Darus, M., Hankel determinant for starlike and convex functions, Int. J. Math. Anal. (Ruse) 1 (13) (2007), 619-625.
  17. Keogh, F. R., Markes, E. P., A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12.
  18. Libera, R. J., Złotkewicz, E. J., Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc. 87 (2) (1983), 251-257.
  19. Miller, S. S., Mocanu, P. T., Differential Subordination: Theory and Applications, Marcel Dekker Inc., New York-Basel, 2000.
  20. Mishra, A. K., Gochhayat, P., Second Hankel determinant for a class of analytic functions defined by fractional derivative, Int. J. Math. Math. Sci. (2008), Art. ID 153280, 1-10.
  21. Mishra, A. K., Kund, S. N., Second Hankel determinant for a class of functions defined by the Carlson-Shaffer, Tamkang J. Math. 44 (1) (2013), 73-82.
  22. Mohammed, A., Darus, M., Second Hankel determinant for a class of analytic functions defined by a linear operator, Tamkang J. Math. 43 (3) (2012), 455-462.
  23. Noonan, J. W., Thomas, D. K., On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (2) (1976), 337-346.
  24. Prajapat, J. K., Subordination and superordination preserving properties for generalized multiplier transformation operator, Math. Comput. Modelling 55 (2012), 1456-1465.
  25. Raina, R. K., Bansal, D., Some properties of a new class of analytic functions defined in tems of a Hadmard product, J. Inequal. Pure Appl. Math. 9 (2008), Art. 22, 1-9.
  26. Rogosinski, W., On the coefficients of subordinate functions, Proc. London Math. Soc. 48 (1943), 48-82.
  27. Salagean, G. S., Subclasses of univalent functions, in Complex analysis - fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), Springer-Verlag, Berlin, 1983, 362-372.
  28. Selvaraj, C., Karthikeyan, K. R., Differential subordinant and superordinations for certain subclasses of analytic functions, Far East J. Math. Sci. 29 (2) (2008), 419-430.
  29. Srivastava, H. M., Karlsson, P. W., Multiple Gaussian Hypergeometric Series, Ellis Horwood Limited, Chichester; Halsted Press, New York, 1985.
Main language of publication
English
Published
2015
Published online
2015-12-30
Exact and natural sciences