ArticleOriginal scientific text
Title
The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds
Authors ,
Abstract
If is a Riemannian manifold, we have the well-known base preserving vector bundle isomorphism given by between the tangent and the cotangent bundles of . In the present note, we generalize this isomorphism to the one between the -th order vector tangent and the -th order cotangent bundles of . Next, we describe all base preserving vector bundle maps depending on a Riemannian metric in terms of natural (in ) tensor fields on .
Bibliography
- Epstein, D. B. A., Natural tensors on Riemannian manifolds, J. Diff. Geom. 10 (1975), 631–645.
- Kobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol. I, J. Wiley- Interscience, New York–London, 1963.
- Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Defferential Geometry, Springer-Verlag, Berlin, 1993.
- Kolář, I., Vosmanská, G., Natural transformations of higher order tangent bundles and jet spaces, Čas. pĕst. mat. 114 (1989), 181–186.
- Kurek, J., Natural transformations of higher order cotangent bundle functors, Ann. Polon. Math. 58, no. 1 (1993), 29–35.
- Mikulski, W. M., Some natural operators on vector fields, Rend Math. Appl (7) 12, no. 3 (1992), 783–803.
- Nijenhuis, A., Natural bundles and their general properties Diff. Geom. in Honor of K. Yano, Kinokuniya, Tokyo (1972), 317–334.
- Paluszny, M., Zajtz, A., Foundation of the Geometry of Natural Bundles, Lect. Notes Univ. Caracas, 1984.