ArticleOriginal scientific text

Title

The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds

Authors ,

Abstract

If (M,g) is a Riemannian manifold, we have the well-known base preserving   vector bundle isomorphism TM=~TM given by vg(v,) between the tangent TM and the cotangent TM bundles of M. In the present note, we generalize this isomorphism to the one T(r)M=~TrM between the r-th order vector tangent T(r)M=(Jr(M,R)0) and the r-th order cotangent TrM=Jr(M,R)0 bundles of M. Next, we describe all base preserving  vector bundle maps CM(g):T(r)MTrM depending on a Riemannian metric g in terms of natural (in g) tensor fields on M.

Bibliography

  1. Epstein, D. B. A., Natural tensors on Riemannian manifolds, J. Diff. Geom. 10 (1975), 631–645.
  2. Kobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol. I, J. Wiley- Interscience, New York–London, 1963.
  3. Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Defferential Geometry, Springer-Verlag, Berlin, 1993.
  4. Kolář, I., Vosmanská, G., Natural transformations of higher order tangent bundles and jet spaces, Čas. pĕst. mat. 114 (1989), 181–186.
  5. Kurek, J., Natural transformations of higher order cotangent bundle functors, Ann. Polon. Math. 58, no. 1 (1993), 29–35.
  6. Mikulski, W. M., Some natural operators on vector fields, Rend Math. Appl (7) 12, no. 3 (1992), 783–803.
  7. Nijenhuis, A., Natural bundles and their general properties Diff. Geom. in Honor of K. Yano, Kinokuniya, Tokyo (1972), 317–334.
  8. Paluszny, M., Zajtz, A., Foundation of the Geometry of Natural Bundles, Lect. Notes Univ. Caracas, 1984.
Main language of publication
English
Published
2014
Published online
2015-05-23
Exact and natural sciences